论文标题
基于调查数据的机器学习的常见人类疾病预测
Common human diseases prediction using machine learning based on survey data
论文作者
论文摘要
在这个时代,作为医疗的主要重点,这一时刻已经到来了。尽管令人印象深刻,但已经开发出来检测疾病的多种技术。此时,有一些类型的疾病COVID-19,正常烟,偏头痛,肺病,心脏病,肾脏疾病,糖尿病,胃病,胃病,胃病,骨病,自闭症是非常常见的疾病。在此分析中,我们根据疾病的症状进行了分析疾病症状的预测。我们研究了一系列症状,并接受了人们的调查以完成任务。已经采用了几种分类算法来训练模型。此外,使用性能评估矩阵来衡量模型的性能。最后,我们发现零件分类器超过了其他分类器。
In this era, the moment has arrived to move away from disease as the primary emphasis of medical treatment. Although impressive, the multiple techniques that have been developed to detect the diseases. In this time, there are some types of diseases COVID-19, normal flue, migraine, lung disease, heart disease, kidney disease, diabetics, stomach disease, gastric, bone disease, autism are the very common diseases. In this analysis, we analyze disease symptoms and have done disease predictions based on their symptoms. We studied a range of symptoms and took a survey from people in order to complete the task. Several classification algorithms have been employed to train the model. Furthermore, performance evaluation matrices are used to measure the model's performance. Finally, we discovered that the part classifier surpasses the others.