论文标题

在$ k_m \ vee c_ {2k-1} $的turán数字上

On the Turán number of $K_m \vee C_{2k-1}$

论文作者

Yan, Jingru

论文摘要

给定图形$ h $和一个正整数$ n $,订单$ n $的$ h $的turán数字,表示为$ ex(n,h)$,是一个简单的订单$ n $的最大大小,不包含$ h $作为子图。给定图表$ g $和$ h $,符号$ g \ vee h $表示$ g $和$ h $的关节。 $χ(g)$表示图形$ g $的色数。由于$χ(k_m \ vee c_ {2k-1})= m+3 $,并且在e中有一个边缘$ e \(k_m \ vee c_ {2k-1} $ c_ {2k-1})= \ lfloor \ frac {(m+1)n^2} {2(m+2)} \ rfloor $,用于足够大的$ n $。在本文中,我们证明$ 2(M+2)K-3(M+2)-1 $对于$ n $的大小足够大。

Given a graph $H$ and a positive integer $n$, the Turán number of $H$ for the order $n$, denoted $ex(n,H)$, is the maximum size of a simple graph of order $n$ not containing $H$ as a subgraph. Given graphs $G$ and $H$, the notation $G \vee H$ means the joint of $G$ and $H$. $χ(G)$ denotes the chromatic number of a graph $G$. Since $χ(K_m \vee C_{2k-1})=m+3$ and there is an edge $e\in E(K_m \vee C_{2k-1})$ such that $χ(K_m \vee C_{2k-1}-e)= m+2$, by the Simonovits theorem, $ex(n, K_m \vee C_{2k-1}) = \lfloor \frac{(m+1)n^2}{2(m+2)}\rfloor$ for sufficiently large $n$. In this paper, we prove that $2(m+2)k-3(m+2)-1$ is large enough for $n$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源