论文标题

您不能躲在耳机后面:用户分析增强和虚拟现实

You Can't Hide Behind Your Headset: User Profiling in Augmented and Virtual Reality

论文作者

Tricomi, Pier Paolo, Nenna, Federica, Pajola, Luca, Conti, Mauro, Gamberini, Luciano

论文摘要

由于它们的技术进步和对远程连接的需求,虚拟和增强现实(VR,AR)越来越受到关注。远程外科手术,远程固醇和虚拟办公室只是其成功的一些例子。当用户与VR/AR互动时,他们会生成广泛的行为数据,通常用于衡量人类行为。但是,关于如何将这些数据用于其他目的的知之甚少。 在这项工作中,我们证明了用户分析在两个不同用例的虚拟技术中的可行性:AR日常应用($ n = 34 $)和VR Robot Teeleperation($ n = 35 $)。具体来说,我们利用机器学习来识别用户并推断其个人属性(即年龄,性别)。通过监视用户的头,控制器和眼动,我们调查了在不同的心理负荷下对几个任务(例如,步行,看,打字)进行分析的便捷性。我们的贡献为虚拟环境中的用户分析提供了重大见解。

Virtual and Augmented Reality (VR, AR) are increasingly gaining traction thanks to their technical advancement and the need for remote connections, recently accentuated by the pandemic. Remote surgery, telerobotics, and virtual offices are only some examples of their successes. As users interact with VR/AR, they generate extensive behavioral data usually leveraged for measuring human behavior. However, little is known about how this data can be used for other purposes. In this work, we demonstrate the feasibility of user profiling in two different use-cases of virtual technologies: AR everyday application ($N=34$) and VR robot teleoperation ($N=35$). Specifically, we leverage machine learning to identify users and infer their individual attributes (i.e., age, gender). By monitoring users' head, controller, and eye movements, we investigate the ease of profiling on several tasks (e.g., walking, looking, typing) under different mental loads. Our contribution gives significant insights into user profiling in virtual environments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源