论文标题
逆增强学习的多个专家的可识别性和可概括性
Identifiability and generalizability from multiple experts in Inverse Reinforcement Learning
论文作者
论文摘要
强化学习(RL)旨在在给定环境中从奖励功能中训练代理商,但反向加强学习(IRL)试图从观察专家的行为中恢复奖励功能。众所周知,总的来说,各种奖励功能会导致相同的最佳政策,因此,IRL定义不明。但是,(Cao等,2021)表明,如果我们观察到两个或多个具有不同折现因子或在不同环境中起作用的专家,则可以在某些条件下确定奖励功能,直至常数。这项工作首先根据等级条件显示了表格MDP的多位专家的等效可识别性声明,该语言易于验证,也被证明是必要的。然后,我们将结果扩展到各种不同的情况,即,在奖励函数可以表示为给定特征的线性组合,使其更容易解释或我们可以访问近似过渡矩阵时,我们表征了奖励可识别性。即使不可识别奖励,我们也提供了特征的条件,即当给定环境中的多个专家的数据允许在新环境中概括和训练最佳代理。在各种数值实验中,我们对奖励可识别性和概括性的理论结果得到了验证。
While Reinforcement Learning (RL) aims to train an agent from a reward function in a given environment, Inverse Reinforcement Learning (IRL) seeks to recover the reward function from observing an expert's behavior. It is well known that, in general, various reward functions can lead to the same optimal policy, and hence, IRL is ill-defined. However, (Cao et al., 2021) showed that, if we observe two or more experts with different discount factors or acting in different environments, the reward function can under certain conditions be identified up to a constant. This work starts by showing an equivalent identifiability statement from multiple experts in tabular MDPs based on a rank condition, which is easily verifiable and is shown to be also necessary. We then extend our result to various different scenarios, i.e., we characterize reward identifiability in the case where the reward function can be represented as a linear combination of given features, making it more interpretable, or when we have access to approximate transition matrices. Even when the reward is not identifiable, we provide conditions characterizing when data on multiple experts in a given environment allows to generalize and train an optimal agent in a new environment. Our theoretical results on reward identifiability and generalizability are validated in various numerical experiments.