论文标题

这就是大流行的样子:搜索引擎上的Covid-19的视觉框架

This is what a pandemic looks like: Visual framing of COVID-19 on search engines

论文作者

Makhortykh, Mykola, Urman, Aleksandra, Ulloa, Roberto

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

In today's high-choice media environment, search engines play an integral role in informing individuals and societies about the latest events. The importance of search algorithms is even higher at the time of crisis, when users search for information to understand the causes and the consequences of the current situation and decide on their course of action. In our paper, we conduct a comparative audit of how different search engines prioritize visual information related to COVID-19 and what consequences it has for the representation of the pandemic. Using a virtual agent-based audit approach, we examine image search results for the term "coronavirus" in English, Russian and Chinese on five major search engines: Google, Yandex, Bing, Yahoo, and DuckDuckGo. Specifically, we focus on how image search results relate to generic news frames (e.g., the attribution of responsibility, human interest, and economics) used in relation to COVID-19 and how their visual composition varies between the search engines.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源