论文标题

部分可观测时空混沌系统的无模型预测

Logarithmic catastrophes and Stokes's phenomenon in waves at horizons

论文作者

Farrell, L. M., Howls, C. J., O'Dell, D. H. J.

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Waves propagating near an event horizon display interesting features including logarithmic phase singularities and caustics. We consider an acoustic horizon in a flowing Bose-Einstein condensate where the elementary excitations obey the Bogoliubov dispersion relation. In the hamiltonian ray theory the solutions undergo a broken pitchfork bifurcation near the horizon and one might therefore expect the associated wave structure to be given by a Pearcey function, this being the universal wave function that dresses catastrophes with two control parameters. However, the wave function is in fact an Airy-type function supplemented by a logarithmic phase term, a novel type of wave catastrophe. Similar wave functions arise in aeroacoustic flows from jet engines and also gravitational horizons if dispersion which violates Lorentz symmetry in the UV is included. The approach we take differs from previous authors in that we analyze the behaviour of the integral representation of the wave function using exponential coordinates. This allows for a different treatment of the branches that gives rise to an analysis based purely on saddlepoint expansions, which resolve the multiple real and complex waves that interact at the horizon and its companion caustic. We find that the horizon is a physical manifestation of a Stokes surface, marking the place where a wave is born, and that the horizon and the caustic do not in general coincide: the finite spatial region between them delineates a broadened horizon.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源