论文标题

U-Sleep对AASM指南的弹性

U-Sleep's resilience to AASM guidelines

论文作者

Fiorillo, Luigi, Monachino, Giuliana, van der Meer, Julia, Pesce, Marco, Warncke, Jan D., Schmidt, Markus H., Bassetti, Claudio L. A., Tzovara, Athina, Favaro, Paolo, Faraci, Francesca D.

论文摘要

AASM准则是数十年来旨在标准化睡眠评分程序的努力的结果,最终的目标是共享全球常见方法。该指南涵盖了从技术/数字规格(例如推荐的EEG推导)到相应详细的睡眠评分规则到年龄的几个方面。自动睡眠评分系统一直在很大程度上利用标准作为基本准则。在这种情况下,与经典的机器学习相比,深度学习表现出更好的性能。我们目前的工作表明,基于深度学习的睡眠评分算法可能不需要充分利用临床知识或严格遵守AASM准则。具体而言,我们证明了U-Sleep是一种最先进的睡眠评分算法,即使使用临床非申请或非规定派生,也可以解决得分任务,也无需利用有关受试者年代年代年龄的信息。我们最终加强了一个众所周知的发现,即与单个队列上的培训相比,使用来自多个数据中心的数据总是会产生更好的性能模型。确实,我们表明,即使增加单个数据队列的大小和异质性,后一种语句仍然有效。在我们的所有实验中,我们使用了来自13个不同临床研究的28528个多摄影研究研究。

AASM guidelines are the result of decades of efforts aiming at standardizing sleep scoring procedure, with the final goal of sharing a worldwide common methodology. The guidelines cover several aspects from the technical/digital specifications,e.g., recommended EEG derivations, to detailed sleep scoring rules accordingly to age. Automated sleep scoring systems have always largely exploited the standards as fundamental guidelines. In this context, deep learning has demonstrated better performance compared to classical machine learning. Our present work shows that a deep learning based sleep scoring algorithm may not need to fully exploit the clinical knowledge or to strictly adhere to the AASM guidelines. Specifically, we demonstrate that U-Sleep, a state-of-the-art sleep scoring algorithm, can be strong enough to solve the scoring task even using clinically non-recommended or non-conventional derivations, and with no need to exploit information about the chronological age of the subjects. We finally strengthen a well-known finding that using data from multiple data centers always results in a better performing model compared with training on a single cohort. Indeed, we show that this latter statement is still valid even by increasing the size and the heterogeneity of the single data cohort. In all our experiments we used 28528 polysomnography studies from 13 different clinical studies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源