论文标题
搜索紧凑型二进制合并引力波的搜索模板放置的二进制树方法
A binary tree approach to template placement for searches for gravitational waves from compact binary mergers
论文作者
论文摘要
我们展示了一种新的几何方法,用于快速模板放置,以搜索来自紧凑型二进制文件的灵感,合并和响声的重力波。该方法基于模板库参数空间的二进制树分解为非重叠的超管。我们使用每个HyperCube中心的信号重叠度度量的数值近似,以估计覆盖HyperCube所需的模板数量,并确定是否进一步拆分了HyperCube。只要给定立方体中的预期模板数量大于给定阈值,我们根据度量沿其最长的边缘将立方体拆分。当给定的超立方体中的预期模板降低到此阈值以下时,将拆分停止和模板放置在HyperCube的中心。使用此方法,我们生成涵盖适合搜索高级LIGO数据的质量范围的对齐的自旋模板库。对齐的旋转银行需要约24个CPU小时,并生产了200万个模板。通常,我们发现其他方法(即随机位置)在波形之间的匹配中会产生更严格的界限损失,并且波形之间的最小匹配需要与我们所提出的算法相同的两倍。尽管我们注意到平均匹配较高,这将导致更高的检测效率。我们的主要动机不是严格地最大程度地减少该算法的模板数量,而是要在物理参数空间坐标中生产具有有用几何特性的库。这种特性对于人群建模和参数估计很有用。
We demonstrate a new geometric method for fast template placement for searches for gravitational waves from the inspiral, merger and ringdown of compact binaries. The method is based on a binary tree decomposition of the template bank parameter space into non-overlapping hypercubes. We use a numerical approximation of the signal overlap metric at the center of each hypercube to estimate the number of templates required to cover the hypercube and determine whether to further split the hypercube. As long as the expected number of templates in a given cube is greater than a given threshold, we split the cube along its longest edge according to the metric. When the expected number of templates in a given hypercube drops below this threshold, the splitting stops and a template is placed at the center of the hypercube. Using this method, we generate aligned-spin template banks covering the mass range suitable for a search of Advanced LIGO data. The aligned-spin bank required ~24 CPU-hours and produced 2 million templates. In general, we find that other methods, namely stochastic placement, produces a more strictly bounded loss in match between waveforms, with the same minimal match between waveforms requiring about twice as many templates with our proposed algorithm. Though we note that the average match is higher, which would lead to a higher detection efficiency. Our primary motivation is not to strictly minimize the number of templates with this algorithm, but rather to produce a bank with useful geometric properties in the physical parameter space coordinates. Such properties are useful for population modeling and parameter estimation.