论文标题

具有记忆力的反应性预期机器人技能

Reactive Anticipatory Robot Skills with Memory

论文作者

Girgin, Hakan, Jankowski, Julius, Calinon, Sylvain

论文摘要

近年来,机器人技术的最佳控制越来越流行,并且已应用于许多涉及复杂动力学系统的应用中。闭环最佳控制策略包括模型预测控制(MPC)和通过ILQR优化的时变线性控制器。但是,此类反馈控制者依靠当前状态的信息,限制了机器人需要记住其在采取行动和相应计划的机器人应用程序范围。最近提出的系统级合成(SLS)框架通过带有内存的富富控制器结构来规避此限制。在这项工作中,我们建议通过将SLS扩展到跟踪涉及非线性系统和非二次成本功能的问题,从而最佳地设计反应性的预期机器人技能。我们以两种情况来展示我们的方法,这些方案利用任务精确度和对象在模拟和真实环境中使用7轴弗兰卡·埃米卡机器人(Franka Emika)机器人提供的选择。

Optimal control in robotics has been increasingly popular in recent years and has been applied in many applications involving complex dynamical systems. Closed-loop optimal control strategies include model predictive control (MPC) and time-varying linear controllers optimized through iLQR. However, such feedback controllers rely on the information of the current state, limiting the range of robotic applications where the robot needs to remember what it has done before to act and plan accordingly. The recently proposed system level synthesis (SLS) framework circumvents this limitation via a richer controller structure with memory. In this work, we propose to optimally design reactive anticipatory robot skills with memory by extending SLS to tracking problems involving nonlinear systems and nonquadratic cost functions. We showcase our method with two scenarios exploiting task precisions and object affordances in pick-and-place tasks in a simulated and a real environment with a 7-axis Franka Emika robot.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源