论文标题

数值和机器学习模型可重大可解释性的遗传因素的预测

Quantile-constrained Wasserstein projections for robust interpretability of numerical and machine learning models

论文作者

Idrissi, Marouane Il, Bousquet, Nicolas, Gamboa, Fabrice, Iooss, Bertrand, Loubes, Jean-Michel

论文摘要

黑框模型的鲁棒性研究被认为是基于结构方程和从数据中学到的预测模型的数值模型的必要任务。这些研究必须评估模型的鲁棒性,以实现其输入的可能错误指定(例如,协变量转移)。通过不确定性定量(UQ)的棱镜对黑盒模型的研究通常基于涉及输入上施加的概率结构的灵敏度分析,而ML模型仅由观察到的数据构建。我们的工作旨在通过为这两个范式提供相关且易于使用的工具来统一UQ和ML可解释性方法。为了为鲁棒性研究提供一个通用且易于理解的框架,我们定义了依赖于概率指标之间的瓦斯汀距离的分位数约束和投影的输入信息的扰动,同时保留其依赖性结构。我们表明,可以通过分析解决这个扰动问题。通过等渗多项式近似来确保规律性约束会导致更光滑的扰动,这在实践中可能更适合。从UQ和ML领域进行的实际案例研究的数值实验突出了此类研究的计算可行性,并提供了对黑盒模型鲁棒性的局部和全球见解,以输入扰动。

Robustness studies of black-box models is recognized as a necessary task for numerical models based on structural equations and predictive models learned from data. These studies must assess the model's robustness to possible misspecification of regarding its inputs (e.g., covariate shift). The study of black-box models, through the prism of uncertainty quantification (UQ), is often based on sensitivity analysis involving a probabilistic structure imposed on the inputs, while ML models are solely constructed from observed data. Our work aim at unifying the UQ and ML interpretability approaches, by providing relevant and easy-to-use tools for both paradigms. To provide a generic and understandable framework for robustness studies, we define perturbations of input information relying on quantile constraints and projections with respect to the Wasserstein distance between probability measures, while preserving their dependence structure. We show that this perturbation problem can be analytically solved. Ensuring regularity constraints by means of isotonic polynomial approximations leads to smoother perturbations, which can be more suitable in practice. Numerical experiments on real case studies, from the UQ and ML fields, highlight the computational feasibility of such studies and provide local and global insights on the robustness of black-box models to input perturbations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源