论文标题

涉及MI:具有高维非参数信念的信息计划

involve-MI: Informative Planning with High-Dimensional Non-Parametric Beliefs

论文作者

Rotman, Gilad, Indelman, Vadim

论文摘要

决策和计划最复杂的任务之一是收集信息。当状态具有高维度并且无法用参数分布表达其信念时,此任务就会变得更加复杂。尽管国家是高维的,但在许多问题中,其中只有一小部分可能参与过渡状态和产生观察结果。我们利用这一事实来计算信息理论的预期奖励,共同信息(MI),在国家的较低维度子集中,以提高效率,而不牺牲准确性。以前的作品使用了类似的方法,但专门用于高斯分布,我们在这里将其扩展为一般分布。此外,我们将降低维度降低用于将新状态增强到上一个的情况下,而又不牺牲准确性。然后,我们继续开发以连续蒙特卡洛(SMC)方式工作的MI的估计器,并避免重建未来信念的表面。最后,我们展示了如何将这项工作应用于信息丰富的计划优化问题。然后在模拟主动大规模问题的模拟中评估了这项工作,其中证明了精度和时机的提高。

One of the most complex tasks of decision making and planning is to gather information. This task becomes even more complex when the state is high-dimensional and its belief cannot be expressed with a parametric distribution. Although the state is high-dimensional, in many problems only a small fraction of it might be involved in transitioning the state and generating observations. We exploit this fact to calculate an information-theoretic expected reward, mutual information (MI), over a much lower-dimensional subset of the state, to improve efficiency and without sacrificing accuracy. A similar approach was used in previous works, yet specifically for Gaussian distributions, and we here extend it for general distributions. Moreover, we apply the dimensionality reduction for cases in which the new states are augmented to the previous, yet again without sacrificing accuracy. We then continue by developing an estimator for the MI which works in a Sequential Monte Carlo (SMC) manner, and avoids the reconstruction of future belief's surfaces. Finally, we show how this work is applied to the informative planning optimization problem. This work is then evaluated in a simulation of an active SLAM problem, where the improvement in both accuracy and timing is demonstrated.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源