论文标题

主要组件分析和神经网络对财务时间序列的异常检测

Anomaly Detection on Financial Time Series by Principal Component Analysis and Neural Networks

论文作者

Crépey, Stéphane, Noureddine, Lehdili, Madhar, Nisrine, Thomas, Maud

论文摘要

在处理涉及各种市场风险因素的财务时间序列时,一个主要问题是存在异常。这些引起了对使用风险和管理风险的模型的错误校准,从而导致了潜在的错误风险措施。我们提出了一种方法,目的是改善财务时间序列中的异常检测,从而克服大多数固有的缺陷。有价值的特征是通过主体组件分析来压缩和重建数据的时间序列中提取的。然后,我们使用FeedForwardneal网络定义异常得分。当其异常得分超过刻度截止值时,时间序列被认为是污染的。该截止值不是手持参数,而是在自定义损耗函数的整个最小化过程中被校准为神经网络参数。与几种众所周知的异常检测算法相比,该方法的效率在合成和真实数据集上是数值证明的,并且在PCA NN方法中实现了高和稳定的性能。我们表明,当使用基本的插定方法纠正异常时,当使用的异常检测模型使用时,危险估计误差会减少。

A major concern when dealing with financial time series involving a wide variety ofmarket risk factors is the presence of anomalies. These induce a miscalibration of the models used toquantify and manage risk, resulting in potential erroneous risk measures. We propose an approachthat aims to improve anomaly detection in financial time series, overcoming most of the inherentdifficulties. Valuable features are extracted from the time series by compressing and reconstructingthe data through principal component analysis. We then define an anomaly score using a feedforwardneural network. A time series is considered to be contaminated when its anomaly score exceeds agiven cutoff value. This cutoff value is not a hand-set parameter but rather is calibrated as a neuralnetwork parameter throughout the minimization of a customized loss function. The efficiency of theproposed approach compared to several well-known anomaly detection algorithms is numericallydemonstrated on both synthetic and real data sets, with high and stable performance being achievedwith the PCA NN approach. We show that value-at-risk estimation errors are reduced when theproposed anomaly detection model is used with a basic imputation approach to correct the anomaly.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源