论文标题
具有同构纤维伯恩赛环的组
Groups with isomorphic fibered Burnside rings
论文作者
论文摘要
令$ g $和$ h $为有限组。我们给出了$ g $和$ h $的条件,这意味着$ a $ a $ fibered burnside环$ b^a(g)$和$ b^a(h)$是同构。结果,我们表明存在非同形群体$ g $和$ h $的存在,因此$ b^a(g)$和$ b^a(h)$是同构环。在这里,可以以非平凡的方式选择Abelian Fiber Group $ a $,也就是说,$ b^a(g)$和$ b^a(h)$严格比$ g $和$ h $的伯恩赛德环(Burnside Cond)大,为此,此类反例已知。
Let $G$ and $H$ be finite groups. We give a condition on $G$ and $H$ that implies that the $A$-fibered Burnside rings $B^A(G)$ and $B^A(H)$ are isomorphic. As a consequence, we show the existence of non-isomorphic groups $G$ and $H$ such that $B^A(G)$ and $B^A(H)$ are isomorphic rings. Here, the abelian fiber group $A$ can be chosen in a non-trivial way, that is, such that $B^A(G)$ and $B^A(H)$ are strictly bigger than the Burnside rings of $G$ and $H$, for which such counterexamples are already known.