论文标题
GLSO:用于样品有效机器人设计自动化的语法引导潜在空间优化
GLSO: Grammar-guided Latent Space Optimization for Sample-efficient Robot Design Automation
论文作者
论文摘要
机器人已用于各种自动化,但机器人的设计仍然主要是手动任务。我们试图提供设计工具来自动化机器人的设计。机器人设计自动化中的一个重要挑战是大型且复杂的设计搜索空间,该搜索空间随着组件的数量而成倍地增长,从而使优化变得困难且效率低下。在这项工作中,我们介绍了语法引导的潜在空间优化(GLSO),该框架通过训练图形变分自动编码器(VAE)将设计自动化转换为低维连续优化问题,以学习图形结构的设计空间和连续的潜在空间之间的映射。这种转换允许在连续的潜在空间中进行优化,在这种情况下,通过应用诸如贝叶斯优化等算法,可以显着提高样品效率。 GLSO使用图形语法规则和机器人世界空间特征指导VAE训练VAE,从而使学习的潜在空间专注于有效的机器人,并且更容易探索优化算法。重要的是,可以重复使用训练有素的VAE来搜索专门针对多个不同任务的设计,而无需再培训。我们通过为模拟中的一组运动任务设计机器人来评估GLSO,并证明我们的方法表现优于相关的最先进的机器人设计自动化方法。
Robots have been used in all sorts of automation, and yet the design of robots remains mainly a manual task. We seek to provide design tools to automate the design of robots themselves. An important challenge in robot design automation is the large and complex design search space which grows exponentially with the number of components, making optimization difficult and sample inefficient. In this work, we present Grammar-guided Latent Space Optimization (GLSO), a framework that transforms design automation into a low-dimensional continuous optimization problem by training a graph variational autoencoder (VAE) to learn a mapping between the graph-structured design space and a continuous latent space. This transformation allows optimization to be conducted in a continuous latent space, where sample efficiency can be significantly boosted by applying algorithms such as Bayesian Optimization. GLSO guides training of the VAE using graph grammar rules and robot world space features, such that the learned latent space focus on valid robots and is easier for the optimization algorithm to explore. Importantly, the trained VAE can be reused to search for designs specialized to multiple different tasks without retraining. We evaluate GLSO by designing robots for a set of locomotion tasks in simulation, and demonstrate that our method outperforms related state-of-the-art robot design automation methods.