论文标题
使用基本平面改进了星系簇的强透镜建模:Baryonic和暗物质质量分布的详细映射Abell S1063
Improved strong lensing modelling of galaxy clusters using the Fundamental Plane: detailed mapping of the baryonic and dark matter mass distribution of Abell S1063
论文作者
论文摘要
强力透镜(SL)已成为非常准确的探针,对星系簇内部区域中簇和星系尺度暗物质(DM)光环的质量分布。可以将DM光环的派生特性与高分辨率宇宙学模拟的预测进行比较,从而为我们提供了标准宇宙学模型的测试。通常选择简单的幂律缩放关系以将成员的总质量与其发光度联系起来,这是星系簇模型中可能固有的系统学之一,因此是在派生的群集质量上。使用有关其结构参数(来自HST成像)和运动学(来自缪斯数据)的新信息,我们为群集Abell S1063的早期型星系构建了基本平面(FP)。我们利用校准的FP来开发簇芯总质量的改进的SL模型。新方法使我们能够在描述簇构件的可观测物之间获得更准确和更复杂的关系,并从观察到的大小和有效的半径中完全固定质量。与幂律方法相比,我们发现质量和速度分散构件之间的关系不同,这显示出显着的散射。得益于对HST数据的群集成员的恒星质量的新估计,我们将累积的投影质量轮廓估计到半径为350 kpc的半径为350 kpc,用于群集的所有baryonic和DM组件。最后,我们比较了模型中亚半的物理特性以及高分辨率流体动力学模拟预测的物理特性。我们根据成员的出色质量分数获得兼容的结果。另一方面,我们证实了最近报道的在次峰的紧凑性方面的差异:在固定的总质量值下,模拟的下半lo不如我们的SL模型预测的差异。
Strong gravitational lensing (SL) has emerged as a very accurate probe of the mass distribution of cluster- and galaxy-scale dark matter (DM) haloes in the inner regions of galaxy clusters. The derived properties of DM haloes can be compared to the predictions of high-resolution cosmological simulations, providing us with a test of the Standard Cosmological Model. The usual choice of simple power-law scaling relations to link the total mass of members with their luminosity is one of the possible inherent systematics within SL models of galaxy clusters, and thus on the derived cluster masses. Using new information on their structural parameters (from HST imaging) and kinematics (from MUSE data), we build the Fundamental Plane (FP) for the early-type galaxies of the cluster Abell S1063. We take advantage of the calibrated FP to develop an improved SL model of the total mass of the cluster core. The new method allows us to obtain more accurate and complex relations between the observables describing cluster members, and to completely fix their mass from their observed magnitudes and effective radii. Compared to the power-law approach, we find a different relation between the mass and the velocity dispersion of members, which shows a significant scatter. Thanks to a new estimate of the stellar mass of the cluster members from HST data, we measure the cumulative projected mass profiles out to a radius of 350 kpc, for all baryonic and DM components of the cluster. Finally, we compare the physical properties of the sub-haloes in our model and those predicted by high-resolution hydrodynamical simulations. We obtain compatible results in terms of the stellar-over-total mass fraction of the members. On the other hand, we confirm the recently reported discrepancy in terms of sub-halo compactness: at a fixed total mass value, simulated sub-haloes are less compact than what our SL model predicts.