论文标题

与神经操作员的快速地震波形建模和反转

Rapid Seismic Waveform Modeling and Inversion with Neural Operators

论文作者

Yang, Yan, Gao, Angela F., Azizzadenesheli, Kamyar, Clayton, Robert W., Ross, Zachary E.

论文摘要

地震波形建模是确定地球结构模型和揭开地震破裂过程的强大工具,但通常在计算上很昂贵。我们介绍了一个计划,以最近开发的机器学习范式称为神经操作员,以极大地加速这些计算。经过培训后,这些模型可以以微不足道的成本模拟完整的波场。我们使用U形神经操作员从使用随机速度模型和源位置进行的数值模拟集合中学习到2D弹性波方程的通用解决方案操作员。我们表明,使用神经操作员进行完整的波形建模比传统数值方法快两个阶数,更重要的是,受过训练的模型可以准确地模拟速度模型,源位置和与训练数据集明显不同的网格离散化。该方法还可以通过自动分化为方便的全波倒置。

Seismic waveform modeling is a powerful tool for determining earth structure models and unraveling earthquake rupture processes, but it is usually computationally expensive. We introduce a scheme to vastly accelerate these calculations with a recently developed machine learning paradigm called the neural operator. Once trained, these models can simulate a full wavefield at negligible cost. We use a U-shaped neural operator to learn a general solution operator to the 2D elastic wave equation from an ensemble of numerical simulations performed with random velocity models and source locations. We show that full waveform modeling with neural operators is nearly two orders of magnitude faster than conventional numerical methods, and more importantly, the trained model enables accurate simulation for velocity models, source locations, and mesh discretization distinctly different from the training dataset. The method also enables convenient full-waveform inversion with automatic differentiation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源