论文标题
BCC气水瓦的经典和机器学习间潜力
Classical and Machine Learning Interatomic Potentials for BCC Vanadium
论文作者
论文摘要
BCC过渡金属(TMS)表现出复杂的温度和应变率依赖性的塑性变形行为,由单个晶体晶格缺陷控制。经典的经验和半经验的原子势在建模缺陷特性(例如螺钉位错结构和BCC结构中的PEIERLS障碍)方面具有有限的能力。在基于DFT的数据集中训练的机器学习(ML)电位在复制脱位核心属性方面取得了一些成功。但是,在VB TMS组中,最广泛使用的DFT功能会产生错误的剪切模量C44,这些剪切模量C44不可感激地转移到机器学习的原子间电位上,而当前ML的ML方法不适合这种重要类的金属和合金。在这里,我们基于(i)基于(i)在经典的半经验修饰的嵌入式ATOM方法(XMEAM-V)和(ii)ML深度潜在框架(DP-Hyb-v)中最新的混合描述的经典电子密度和筛选参数的扩展,开发了两个原子间潜力。我们描述了这两种不同的方法中的不同特征,包括它们的数据集生成,训练程序,弱点和强度在BCC V中建模晶格和缺陷特性。特别是,XMEAM-V在DFT精确度和C44接近实验值时几乎重现了几乎所有机械和热力学特性。 XMeam-V自然还表现出在VB和VIB TMS中广泛观察到的77 K处的异常滑动,并且胜过V. V的所有现有,公开可用的原子间潜在。
BCC transition metals (TMs) exhibit complex temperature and strain-rate dependent plastic deformation behaviour controlled by individual crystal lattice defects. Classical empirical and semi-empirical interatomic potentials have limited capability in modelling defect properties such as the screw dislocation core structures and Peierls barriers in the BCC structure. Machine learning (ML) potentials, trained on DFT-based datasets, have shown some successes in reproducing dislocation core properties. However, in group VB TMs, the most widely-used DFT functionals produce erroneous shear moduli C44 which are undesirably transferred to machine-learning interatomic potentials, leaving current ML approaches unsuitable for this important class of metals and alloys. Here, we develop two interatomic potentials for BCC vanadium (V) based on (i) an extension of the partial electron density and screening parameter in the classical semi-empirical modified embedded-atom method (XMEAM-V) and (ii) a recent hybrid descriptor in the ML Deep Potential framework (DP-HYB-V). We describe distinct features in these two disparate approaches, including their dataset generation, training procedure, weakness and strength in modelling lattice and defect properties in BCC V. Both XMEAM-V and DP-HYB-V reproduce a broad range of defect properties relevant to plastic deformation and fracture. In particular, XMEAM-V reproduces nearly all mechanical and thermodynamic properties at DFT accuracies and with C44 near experimental value. XMEAM-V also naturally exhibits the anomalous slip at 77 K widely observed in group VB and VIB TMs and outperforms all existing, publically available interatomic potentials for V. The XMEAM thus provides a practical path to developing accurate and efficient interatomic potentials for nonmagnetic BCC TMs and possibly multi-principal element TM alloys.