论文标题
牛顿 - 曲线班的科恩科夫机构
Newton--Okounkov bodies of curve classes
论文作者
论文摘要
本文的目的是启动牛顿奥恩科夫曲线阶级的理论的发展。我们的否认是基于在曲线案例中制造牛顿科翁科夫机构的基本特性:曲线的牛tonokounkov体的体积是原始曲线的音量型函数。这种结构使我们能够猜测牛顿科翁科夫的身体之间存在新的关系,在某些情况下,我们证明了这一点。
The purpose of the paper is to initiate the development of the theory of Newton Okounkov bodies of curve classes. Our denition is based on making a fundamental property of NewtonOkounkov bodies hold also in the curve case: the volume of the NewtonOkounkov body of a curve is a volume-type function of the original curve. This construction allows us to conjecture a new relation between NewtonOkounkov bodies, we prove it in certain cases.