论文标题
洗牌 - Qudio:加速分布式VQE,并降低可训练性和测量
Shuffle-QUDIO: accelerate distributed VQE with trainability enhancement and measurement reduction
论文作者
论文摘要
变分量子本层(VQE)是一种领先的策略,可利用嘈杂的中间尺度量子(NISQ)机器来解决化学问题的表现优于经典方法。为了获得大规模问题的计算优势,可行的解决方案是量子分布式优化(QUDIO)方案,该方案将原始问题划分为$ K $子问题,并将其分配给$ K $量子机器,然后由并行优化。尽管可证明的加速度比率,但Qudio的效率可能会因同步操作而大大降低。为了征服这个问题,我们在这里提议在量子分布式优化期间,将洗牌措施涉及混洗操作。与Qudio相比,Shuffle-Qudio显着降低了量子处理器之间的通信频率,并同时达到了更好的训练性。特别是,我们证明,Shuffle-Qudio的收敛速率比Qudio更快。进行了广泛的数值实验,以验证估计分子的基态能量的任务中,造成壁垒的时间加速和低近似误差。我们从经验上证明,我们的建议可以与其他加速技术(例如操作员分组)无缝集成,以进一步提高VQE的功效。
The variational quantum eigensolver (VQE) is a leading strategy that exploits noisy intermediate-scale quantum (NISQ) machines to tackle chemical problems outperforming classical approaches. To gain such computational advantages on large-scale problems, a feasible solution is the QUantum DIstributed Optimization (QUDIO) scheme, which partitions the original problem into $K$ subproblems and allocates them to $K$ quantum machines followed by the parallel optimization. Despite the provable acceleration ratio, the efficiency of QUDIO may heavily degrade by the synchronization operation. To conquer this issue, here we propose Shuffle-QUDIO to involve shuffle operations into local Hamiltonians during the quantum distributed optimization. Compared with QUDIO, Shuffle-QUDIO significantly reduces the communication frequency among quantum processors and simultaneously achieves better trainability. Particularly, we prove that Shuffle-QUDIO enables a faster convergence rate over QUDIO. Extensive numerical experiments are conducted to verify that Shuffle-QUDIO allows both a wall-clock time speedup and low approximation error in the tasks of estimating the ground state energy of molecule. We empirically demonstrate that our proposal can be seamlessly integrated with other acceleration techniques, such as operator grouping, to further improve the efficacy of VQE.