论文标题

从头开始建模固体溶液在高熵合金中的增强

Accurate ab initio modeling of solid solution strengthening in high entropy alloys

论文作者

Moitzi, Franco, Romaner, Lorenz, Ruban, Andrei V., Peil, Oleg E.

论文摘要

高熵合金(HEA)代表具有有前途的特性的一类材料,例如高强度和延展性,辐射损伤耐受性等。同时,组合上有大量的组合物和复杂的结构使它们很难使用常规方法进行研究。在这项工作中,我们基于从头算在一致的电位近似中的从头算计算提出了一种计算有效的方法。为了使方法论预测性,我们对状态方程进行了交换相关校正,并考虑了对磁态和平衡体积的热影响。该方法与可用的实验数据显示了良好的实验数据。作为一种特殊情况,将工作流程应用于一系列铁组HEE,以根据合金的有效介质表示,研究其实心溶液在无参数模型中加强。结果揭示了合金成分之间的复杂相互作用,我们通过简单的局部键合模型来分析它们。由于其计算效率,该方法可以用作自适应学习工作流程以最佳设计的基础。

High entropy alloys (HEA) represent a class of materials with promising properties, such as high strength and ductility, radiation damage tolerance, etc. At the same time, a combinatorially large variety of compositions and a complex structure render them quite hard to study using conventional methods. In this work, we present a computationally efficient methodology based on ab initio calculations within the coherent potential approximation. To make the methodology predictive, we apply an exchange-correlation correction to the equation of state and take into account thermal effects on the magnetic state and the equilibrium volume. The approach shows good agreement with available experimental data on bulk properties of solid solutions. As a particular case, the workflow is applied to a series of iron-group HEA to investigate their solid solution strengthening within a parameter-free model based on the effective medium representation of an alloy. The results reveal intricate interactions between alloy components, which we analyze by means of a simple model of local bonding. Thanks to its computational efficiency, the methodology can be used as a basis for an adaptive learning workflow for optimal design of HEA.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源