论文标题

MIMO综合感应和交流:CRB利率折衷

MIMO Integrated Sensing and Communication: CRB-Rate Tradeoff

论文作者

Hua, Haocheng, Han, Tony Xiao, Xu, Jie

论文摘要

本文研究了一个多输入多输出(MIMO)集成感应和通信(ISAC)系统,其中多个Antenna基站(BS)发送统一的无线信号以估算一个传感目标并与多种多类通信用户(CU)进行通信。我们考虑了点和扩展目标模型。对于点目标情况,BS估计目标角,我们采用CRAMér-RAO结合(CRB)作为感测性能度量标准。对于扩展目标情况,BS估计了完整的目标响应矩阵,我们考虑了三个不同的感应性能指标,包括痕迹,最大特征值和CRB矩阵的决定因素,用于目标响应矩阵估计。对于通过不同的CRB度量的四种情况中的每一个,我们通过表征可实现的CRB率(C-R)区域的帕累托边界来调查CRB之间的基本权衡,以进行估计和通信数据速率。特别是,我们通过优化BS处的传输协方差矩阵来制定一个新的MIMO速率最大化问题,但要遵守不同形式的最大CRB约束形式及其最大发射功率约束。对于这些问题,我们使用高级凸优化技术以半封闭形式获得其最佳解决方案。对于点目标情况,最佳解决方案是通过对将\ emph {复合通道矩阵}对角线化获得的最佳解决方案,并在这些分解的亚渠道上以及水填充的功率分配以及水填充功率分配。对于扩展目标案例中的三种情况,最佳解决方案是通过SVD对角度对\ emph {Communication Channel}进行对角度获得的,并在两个正交子渠道的两个正交集合上进行适当的功率分配。进行数值结果以验证所提出的设计。

This paper studies a multiple-input multiple-output (MIMO) integrated sensing and communication (ISAC) system, in which a multi-antenna base station (BS) sends unified wireless signals to estimate one sensing target and communicate with a multi-antenna communication user (CU) simultaneously. We consider both the point and extended target models. For the point target case, the BS estimates the target angle and we adopt the Cramér-Rao bound (CRB) for angle estimation as the sensing performance metric. For the extended target case, the BS estimates the complete target response matrix, and we consider three different sensing performance metrics including the trace, the maximum eigenvalue, and the determinant of the CRB matrix for target response matrix estimation. For each of the four scenarios with different CRB measures, we investigate the fundamental tradeoff between the CRB for estimation and the data rate for communication, by characterizing the Pareto boundary of the achievable CRB-rate (C-R) region. In particular, we formulate a new MIMO rate maximization problem for each scenario, by optimizing the transmit covariance matrix at the BS, subject to a different form of maximum CRB constraint and its maximum transmit power constraint. For these problems, we obtain their optimal solutions in semi-closed forms by using advanced convex optimization techniques. For the point target case, the optimal solution is obtained by diagonalizing a \emph{composite channel matrix} via singular value decomposition (SVD) together with water-filling-like power allocation over these decomposed subchannels. For the three scenarios in the extended target case, the optimal solutions are obtained by diagonalizing the \emph{communication channel} via SVD, together with proper power allocation over two orthogonal sets of subchannels. Numerical results are conducted to validate the proposed design.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源