论文标题
部分可观测时空混沌系统的无模型预测
Automated Urban Planning aware Spatial Hierarchies and Human Instructions
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Traditional urban planning demands urban experts to spend considerable time and effort producing an optimal urban plan under many architectural constraints. The remarkable imaginative ability of deep generative learning provides hope for renovating urban planning. While automated urban planners have been examined, they are constrained because of the following: 1) neglecting human requirements in urban planning; 2) omitting spatial hierarchies in urban planning, and 3) lacking numerous urban plan data samples. To overcome these limitations, we propose a novel, deep, human-instructed urban planner. In the preliminary work, we formulate it into an encoder-decoder paradigm. The encoder is to learn the information distribution of surrounding contexts, human instructions, and land-use configuration. The decoder is to reconstruct the land-use configuration and the associated urban functional zones. The reconstruction procedure will capture the spatial hierarchies between functional zones and spatial grids. Meanwhile, we introduce a variational Gaussian mechanism to mitigate the data sparsity issue. Even though early work has led to good results, the performance of generation is still unstable because the way spatial hierarchies are captured may lead to unclear optimization directions. In this journal version, we propose a cascading deep generative framework based on generative adversarial networks (GANs) to solve this problem, inspired by the workflow of urban experts. In particular, the purpose of the first GAN is to build urban functional zones based on information from human instructions and surrounding contexts. The second GAN will produce the land-use configuration based on the functional zones that have been constructed. Additionally, we provide a conditioning augmentation module to augment data samples. Finally, we conduct extensive experiments to validate the efficacy of our work.