论文标题

动态的单播媒体调度,用于车辆网络中年龄最佳信息传播

Dynamic Unicast-Multicast Scheduling for Age-Optimal Information Dissemination in Vehicular Networks

论文作者

Al-Habob, Ahmed, Tabassum, Hina, Waqar, Omer

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

This paper investigates the problem of minimizing the age-of-information (AoI) and transmit power consumption in a vehicular network, where a roadside unit (RSU) provides timely updates about a set of physical processes to vehicles. Each vehicle is interested in maintaining the freshness of its information status about one or more physical processes. A framework is proposed to optimize the decisions to unicast, multicast, broadcast, or not transmit updates to vehicles as well as power allocations to minimize the AoI and the RSU's power consumption over a time horizon. The formulated problem is a mixed-integer nonlinear programming problem (MINLP), thus a global optimal solution is difficult to achieve. In this context, we first develop an ant colony optimization (ACO) solution which provides near-optimal performance and thus serves as an efficient benchmark. Then, for real-time implementation, we develop a deep reinforcement learning (DRL) framework that captures the vehicles' demands and channel conditions in the state space and assigns processes to vehicles through dynamic unicast-multicast scheduling actions. Complexity analysis of the proposed algorithms is presented. Simulation results depict interesting trade-offs between AoI and power consumption as a function of the network parameters.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源