论文标题

以任务为导向的通信中计算密集型状态更新的信息及时性

Timeliness of Information for Computation-intensive Status Updates in Task-oriented Communications

论文作者

Qin, Xiaoqi, Li, Yanlin, Song, Xianxin, Ma, Nan, Huang, Chuan, Zhang, Ping

论文摘要

超越仅相互连接的设备,通信与计算之间的相互作用增加为实时网络控制系统的愿景带来了。为了获得及时的情境意识,IoT设备不断采样计算密集型状态更新,生成感知任务并将其卸载到Edge服务器进行处理。从这个意义上讲,信息的及时性被视为状态更新的主要上下文属性。在本文中,我们得出了在Edge Tier和Fog Tier上卸载信息及时的封闭形式表达式,其中将利用两个阶段的串联队列来抽象传输和计算过程。此外,我们利用高斯 - 马尔科夫过程的统计结构,该过程被广泛用于模拟系统状态的时间动力学,并得出了与过程相关的信息的封闭形式表达式。所获得的分析公式明确表征了任务产生,传输和执行之间的依赖性,这可以用作系统优化的目标函数。基于理论结果,我们在边缘层上制定了一个计算卸载优化问题,其中通过联合优化任务生成,带宽分配和计算资源分配,将状态更新的及时性最小化。提出了一种迭代溶液程序来解决公式化问题。数值结果揭示了传输和计算阶段之间的相互交织关系,并验证了在任务生成过程中进行计算策略设计的必要性。

Moving beyond just interconnected devices, the increasing interplay between communication and computation has fed the vision of real-time networked control systems. To obtain timely situational awareness, IoT devices continuously sample computation-intensive status updates, generate perception tasks and offload them to edge servers for processing. In this sense, the timeliness of information is considered as one major contextual attribute of status updates. In this paper, we derive the closed-form expressions of timeliness of information for computation offloading at both edge tier and fog tier, where two stage tandem queues are exploited to abstract the transmission and computation process. Moreover, we exploit the statistical structure of Gauss-Markov process, which is widely adopted to model temporal dynamics of system states, and derive the closed-form expression for process-related timeliness of information. The obtained analytical formulas explicitly characterize the dependency among task generation, transmission and execution, which can serve as objective functions for system optimization. Based on the theoretical results, we formulate a computation offloading optimization problem at edge tier, where the timeliness of status updates is minimized among multiple devices by joint optimization of task generation, bandwidth allocation, and computation resource allocation. An iterative solution procedure is proposed to solve the formulated problem. Numerical results reveal the intertwined relationship among transmission and computation stages, and verify the necessity of factoring in the task generation process for computation offloading strategy design.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源