论文标题

固定顺序计算的精确扰动预测

Precise perturbative predictions from fixed-order calculations

论文作者

Yan, Jiang, Wu, Zhi-Fei, Shen, Jian-Ming, Wu, Xing-Gang

论文摘要

固有的保密性是可纠正的规格理论的一般特性,可确保在每个扰动顺序上固定阶段的尺度变异。遵循内在的保融概念,我们建议在最大保密性(PMC)原则下采用一种新颖的单尺度设定方法,目的是消除常规的重新归一化方案和规模的歧义。我们将这种新建议的单尺度程序称为PMC $ _ {\ infty} $ - S方法,其中总体有效的$α_s$,因此通过确定每种订单的$ \ {β_0\} $ - 按订单确定$ \ {β_0\} $来实现整体有效量表。其由此产生的保形系列是规模不变,并且满足所有重新归一化组的要求。 PMC $ _ {\ infty} $ - S方法适用于任何可扰动的可观察物,其结果扰动系列为估算未知高阶(UHO)项的贡献提供了准确的基础。使用希格斯逐渐陷入两个gluons to五环QCD校正,例如,我们显示pmc $ _ {\ infty} $ - s的工作方式,我们获得了$γ_ {\ rm h} \ big | _ {\ big | _ {\ text {pmc} _ { 334.45^{+7.07} _ { - 7.03}〜{\ rm kev} $和$γ_ {\ rm h} 334.45^{+6.34} _ { - 6.29}〜{\ rm kev} $。在这里,错误是文本正文中提到的那些的平均值。已采用PAD $ \急性{E} $近似方法(PAA)和贝叶斯方法(B.A.)来估算UHO-Terms的贡献。我们还证明,PMC $ _ {\ infty} $ - s方法等于我们先前建议的单尺度设置方法(PMC),该方法也从PMC遵循,但从不同角度来看$ \ {β_i\} $ - 术语。因此,正确使用重新规范化组方程可以提供解决规模设定问题的坚实方法。

The intrinsic conformality is a general property of the renormalizable gauge theory, which ensures the scale-invariance of a fixed-order series at each perturbative order. Following the idea of intrinsic conformality, we suggest a novel single-scale setting approach under the principle of maximum conformality (PMC) with the purpose of removing the conventional renormalization scheme-and-scale ambiguities. We call this newly suggested single-scale procedure as the PMC$_{\infty}$-s approach, in which an overall effective $α_s$, and hence an overall effective scale is achieved by identifying the $\{β_0\}$-terms at each order. Its resultant conformal series is scale-invariant and satisfies all renormalization group requirements. The PMC$_{\infty}$-s approach is applicable to any perturbatively calculable observables, and its resultant perturbative series provides an accurate basis for estimating the contribution from the unknown higher-order (UHO) terms. Using the Higgs decays into two gluons up to five-loop QCD corrections as an example, we show how the PMC$_{\infty}$-s works, and we obtain $Γ_{\rm H}\big|_{\text{PMC}_{\infty}\text{-s}}^{\rm PAA} = 334.45^{+7.07}_{-7.03}~{\rm KeV}$ and $Γ_{\rm H}\big|_{\text{PMC}_{\infty}\text{-s}}^{\rm B.A.} = 334.45^{+6.34}_{-6.29}~{\rm KeV}$. Here the errors are squared averages of those mentioned in the body of the text. The Pad$\acute{e}$ approximation approach (PAA) and the Bayesian approach (B.A.) have been adopted to estimate the contributions from the UHO-terms. We also demonstrate that the PMC$_{\infty}$-s approach is equivalent to our previously suggested single-scale setting approach (PMCs), which also follows from the PMC but treats the $\{β_i\}$-terms from different point of view. Thus a proper using of the renormalization group equation can provide a solid way to solve the scale-setting problem.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源