论文标题

研究建议分类的分层跨学科主题检测模型

Hierarchical Interdisciplinary Topic Detection Model for Research Proposal Classification

论文作者

Xiao, Meng, Qiao, Ziyue, Fu, Yanjie, Dong, Hao, Du, Yi, Wang, Pengyang, Xiong, Hui, Zhou, Yuanchun

论文摘要

对研究建议的同行评价是决定授予奖励的主要机制。但是,研究建议已变得越来越跨学科。将跨学科建议分配给适当的审阅者是一个长期以来的挑战,因此对建议进行了公平评估。审阅者分配的关键步骤之一是为提案评估器匹配生成准确的跨学科主题标签。现有系统主要收集由主要研究人员手动生成的主题标签。但是,这样的人类报告的标签可能是不准确的,不完整的,劳动的不完整和时间的,而且时间昂贵。 AI可以在开发公平而精确的提案审稿人分配系统中扮演什么角色?在这项研究中,我们与中国国家科学基金会合作解决了自动跨学科主题路径检测的任务。为此,我们开发了一个深层的分层跨学科研究建议分类网络(HIRPCN)。具体而言,我们首先提出了一个分层变压器来提取建议的文本语义信息。然后,我们设计了一个跨学科的图表,并利用GNNS来学习每个学科,以提取跨学科知识。在提取语义和跨学科知识之后,我们设计了一个水平的预测组成部分,以融合两种类型的知识表示并检测每个建议的跨学科主题路径。我们对三个现实世界数据集进行了广泛的实验和专家评估,以证明我们提出的模型的有效性。

The peer merit review of research proposals has been the major mechanism for deciding grant awards. However, research proposals have become increasingly interdisciplinary. It has been a longstanding challenge to assign interdisciplinary proposals to appropriate reviewers, so proposals are fairly evaluated. One of the critical steps in reviewer assignment is to generate accurate interdisciplinary topic labels for proposal-reviewer matching. Existing systems mainly collect topic labels manually generated by principal investigators. However, such human-reported labels can be non-accurate, incomplete, labor intensive, and time costly. What role can AI play in developing a fair and precise proposal reviewer assignment system? In this study, we collaborate with the National Science Foundation of China to address the task of automated interdisciplinary topic path detection. For this purpose, we develop a deep Hierarchical Interdisciplinary Research Proposal Classification Network (HIRPCN). Specifically, we first propose a hierarchical transformer to extract the textual semantic information of proposals. We then design an interdisciplinary graph and leverage GNNs for learning representations of each discipline in order to extract interdisciplinary knowledge. After extracting the semantic and interdisciplinary knowledge, we design a level-wise prediction component to fuse the two types of knowledge representations and detect interdisciplinary topic paths for each proposal. We conduct extensive experiments and expert evaluations on three real-world datasets to demonstrate the effectiveness of our proposed model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源