论文标题

剥离扩散误差校正代码

Denoising Diffusion Error Correction Codes

论文作者

Choukroun, Yoni, Wolf, Lior

论文摘要

错误校正代码(ECC)是物理通信层不可或缺的一部分,可确保可靠的数据传输在嘈杂的通道上。最近,神经解码器与经典解码技术相比证明了它们的优势。但是,最近的最新神经解码器遭受了很高的复杂性,并且缺乏许多传统解码器的重要迭代方案特征。在这项工作中,我们建议采用denoising扩散模型,以在任意块长度下线性代码的软解码。我们的框架将远期通道损坏建模为一系列可以迭代的扩散步骤。做出了三个贡献:(i)引入适用于解码设置的扩散过程,(ii)神经扩散解码器以均衡误差的数量为条件,这表明在给定步骤中的损坏水平,(iii)基于代码综合征获得的线路搜索过程,获得了最佳的反向扩散式渐变步长。所提出的方法证明了ECC扩散模型的功能,并且能够达到最高的准确性,即使在单个反向扩散步骤中,也可以通过相当大的边缘来表现优于其他神经解码器。

Error correction code (ECC) is an integral part of the physical communication layer, ensuring reliable data transfer over noisy channels. Recently, neural decoders have demonstrated their advantage over classical decoding techniques. However, recent state-of-the-art neural decoders suffer from high complexity and lack the important iterative scheme characteristic of many legacy decoders. In this work, we propose to employ denoising diffusion models for the soft decoding of linear codes at arbitrary block lengths. Our framework models the forward channel corruption as a series of diffusion steps that can be reversed iteratively. Three contributions are made: (i) a diffusion process suitable for the decoding setting is introduced, (ii) the neural diffusion decoder is conditioned on the number of parity errors, which indicates the level of corruption at a given step, (iii) a line search procedure based on the code's syndrome obtains the optimal reverse diffusion step size. The proposed approach demonstrates the power of diffusion models for ECC and is able to achieve state of the art accuracy, outperforming the other neural decoders by sizable margins, even for a single reverse diffusion step.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源