论文标题
部分可观测时空混沌系统的无模型预测
Stochastic model for barrier crossings and fluctuations in local timescale
论文作者
论文摘要
计算亚稳态状态之间扩散辅助屏障横梁速率的问题是物理科学中广泛的相关性之一。过渡路径形式主义的目的是通过分析有关两个亚稳态区域之间过渡路径的统计特性来计算这些事件的速率。在本文中,我们表明过渡路径过程是对相关随机微分方程(SDE)的独特解决方案,具有不连续和奇异的漂移项。奇点是由当地时间的贡献引起的,这解释了亚稳态区域边界的波动。在当地时间尺度上存在波动的存在要求对障碍交叉事件的偏移理论考虑。我们表明,从偏移理论计算出的此类事件的速率将其分解为当地时间术语和偏移度量项,这与过渡状态理论速率表达式具有经验相似性。由于旅行理论对势能环境中过渡态的存在没有任何假设,因此该分解为一般的数学结构应该是一般的。因此,我们期望游览理论(和当地时代)在通用屏障问题上提供一些物理和数学见解。
The problem of computing the rate of diffusion-aided activated barrier crossings between metastable states is one of broad relevance in physical sciences. The transition path formalism aims to compute the rate of these events by analysing the statistical properties of the transition path between the two metastable regions concerned. In this paper, we show that the transition path process is a unique solution to an associated stochastic differential equation (SDE), with a discontinuous and singular drift term. The singularity arises from a local time contribution, which accounts for the fluctuations at the boundaries of the metastable regions. The presence of fluctuations at the local time scale calls for an excursion theoretic consideration of barrier crossing events. We show that the rate of such events, as computed from excursion theory, factorizes into a local time term and an excursion measure term, which bears empirical similarity to the transition state theory rate expression. Since excursion theory makes no assumption about the presence of a transition state in the potential energy landscape, the mathematical structure underlying this factorization ought to be general. We hence expect excursion theory (and local times) to provide some physical and mathematical insights in generic barrier crossing problems.