论文标题
部分可观测时空混沌系统的无模型预测
Mr. Right: Multimodal Retrieval on Representation of ImaGe witH Text
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Multimodal learning is a recent challenge that extends unimodal learning by generalizing its domain to diverse modalities, such as texts, images, or speech. This extension requires models to process and relate information from multiple modalities. In Information Retrieval, traditional retrieval tasks focus on the similarity between unimodal documents and queries, while image-text retrieval hypothesizes that most texts contain the scene context from images. This separation has ignored that real-world queries may involve text content, image captions, or both. To address this, we introduce Multimodal Retrieval on Representation of ImaGe witH Text (Mr. Right), a novel and comprehensive dataset for multimodal retrieval. We utilize the Wikipedia dataset with rich text-image examples and generate three types of text-based queries with different modality information: text-related, image-related, and mixed. To validate the effectiveness of our dataset, we provide a multimodal training paradigm and evaluate previous text retrieval and image retrieval frameworks. The results show that proposed multimodal retrieval can improve retrieval performance, but creating a well-unified document representation with texts and images is still a challenge. We hope Mr. Right allows us to broaden current retrieval systems better and contributes to accelerating the advancement of multimodal learning in the Information Retrieval.