论文标题
部分可观测时空混沌系统的无模型预测
Experimental study of time series forecasting methods for groundwater level prediction
论文作者
论文摘要
地下水位预测是一个应用时间序列预测任务,具有重要的社会影响,以优化水管理以及防止某些自然灾害:例如,洪水或严重的干旱。在文献中已经报告了机器学习方法以实现这项任务,但它们仅专注于单个位置的地下水水平的预测。一种全球预测方法旨在利用从各个位置的地下水级时序列利用地下水级别的时间序列,一次在一个地方或一次在几个地方产生预测。鉴于全球预测方法在著名的竞争中取得了成功,因此在地下水一级预测上评估它们并查看它们与本地方法的比较是有意义的。在这项工作中,我们创建了一个由1026地下水级时序列的数据集。每个时间序列都是由地下水水平和两个外源变量的每日测量组成的,降雨和蒸散量。该数据集可向社区提供可再现性和进一步评估。为了确定最佳的配置,可以有效地预测完整的时间序列的地下水水平,我们比较了包括本地和全球时间序列预测方法在内的不同预测因子。我们评估了外源变量的影响。我们的结果分析表明,通过训练过去的地下水水平和降雨数据的全球方法获得最佳预测。
Groundwater level prediction is an applied time series forecasting task with important social impacts to optimize water management as well as preventing some natural disasters: for instance, floods or severe droughts. Machine learning methods have been reported in the literature to achieve this task, but they are only focused on the forecast of the groundwater level at a single location. A global forecasting method aims at exploiting the groundwater level time series from a wide range of locations to produce predictions at a single place or at several places at a time. Given the recent success of global forecasting methods in prestigious competitions, it is meaningful to assess them on groundwater level prediction and see how they are compared to local methods. In this work, we created a dataset of 1026 groundwater level time series. Each time series is made of daily measurements of groundwater levels and two exogenous variables, rainfall and evapotranspiration. This dataset is made available to the communities for reproducibility and further evaluation. To identify the best configuration to effectively predict groundwater level for the complete set of time series, we compared different predictors including local and global time series forecasting methods. We assessed the impact of exogenous variables. Our result analysis shows that the best predictions are obtained by training a global method on past groundwater levels and rainfall data.