论文标题

使用傅立叶分析对轨道元素进行分析确定。 ii。 Gaia天文统计及其与径向速度的结合

Analytical determination of orbital elements using Fourier analysis. II. Gaia astrometry and its combination with radial velocities

论文作者

Delisle, J. -B., Ségransan, D.

论文摘要

自2014年以来,ESA全球天文学空间任务Gaia一直在监视十亿颗恒星的位置。在所涉及的数据处理方面,对这种大规模数据集的分析具有挑战性。特别是,使用GAIA星形法对恒星(行星,棕色矮人或恒星)的单一或多个伴侣的盲目检测和表征需要高效的算法。在本文中,我们提出了一组分析方法,以检测和表征扫描空间天文学时间序列中的同伴,以及通过天体和径向速度时间序列的组合。我们提出了一个通用的线性期刊框架,并得出了分析公式的误报概率(FAP)的期刊峰。一旦确定了显着的峰,我们就会根据信号的傅立叶分解来提供对伴侣的所有轨道元素的分析估计。可以分别或串联计算天体和径向速度时间序列的周期图,FAP和轨道元件估计值。这些方法具有更准确,更精确的密集性数值算法(例如,最小二乘最小化,马尔可夫链蒙特卡洛,遗传算法)。特别是,我们的分析近似可用作加速数值算法的收敛性的初始条件。我们的形式主义已在GAIA系外行星管道中部分实施,以供第三个Gaia数据发布。由于GAIA天文学时间序列尚未公开可用,因此我们根据Hipparcos数据以及地面Coralie radial速度说明了我们的方法,该速度已知三个已知的目标:HD 223636:HD 223636(HIP 117622),HD 17289,HIP 17289(HIP 12726)(HIP 12726)和HIP 32277(HIP 27990)(HIP 27990)(HIP 27990)。

The ESA global astrometry space mission Gaia has been monitoring the position of a billion stars since 2014. The analysis of such a massive dataset is challenging in terms of the data processing involved. In particular, the blind detection and characterization of single or multiple companions to stars (planets, brown dwarfs, or stars) using Gaia astrometry requires highly efficient algorithms. In this article, we present a set of analytical methods to detect and characterize companions in scanning space astrometric time series as well as via a combination of astrometric and radial velocity time series. We propose a general linear periodogram framework and we derive analytical formulas for the false alarm probability (FAP) of periodogram peaks. Once a significant peak has been identified, we provide analytical estimates of all the orbital elements of the companion based on the Fourier decomposition of the signal. The periodogram, FAP, and orbital elements estimates can be computed for the astrometric and radial velocity time series separately or in tandem. These methods are complementary with more accurate and more computationally intensive numerical algorithms (e.g., least-squares minimization, Markov chain Monte Carlo, genetic algorithms). In particular, our analytical approximations can be used as an initial condition to accelerate the convergence of numerical algorithms. Our formalism has been partially implemented in the Gaia exoplanet pipeline for the third Gaia data release. Since the Gaia astrometric time series are not yet publicly available, we illustrate our methods on the basis of Hipparcos data, together with on-ground CORALIE radial velocities, for three targets known to host a companion: HD 223636 (HIP 117622), HD 17289 (HIP 12726), and HD 3277 (HIP 2790).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源