论文标题
使用开放的RAN Architectures在5G网络中进行交通转向的可编程和定制的情报
Programmable and Customized Intelligence for Traffic Steering in 5G Networks Using Open RAN Architectures
论文作者
论文摘要
5G及以后的移动网络将以前所未有的规模支持异质用例,从而要求自动控制和优化针对单个用户需求定制的网络功能。当前的蜂窝体系结构不可能对无线电访问网络(RAN)进行这种细粒度控制。为了填补这一空白,开放式运行范式及其规范引入了一个带有抽象的开放体系结构,该架构具有闭环控制,并在用户级别提供了数据驱动和智能优化RAN。这是通过在网络边缘部署在近实时RAN智能控制器(接近RT RIC)上的自定义RAN控制应用程序(即XAPP)获得的。尽管有这些前提,但截至今天,研究界缺乏用于构建数据驱动XAPP的沙箱,并创建大型数据集以有效的AI培训。在本文中,我们通过引入NS-O-RAN来解决这个问题,NS-O-RAN是一个软件框架,该软件框架将现实世界中的生产级接近RIC与NS-3上的基于3GPP的模拟环境集成在一起,从而使XAPPS的开发和自动化的大规模数据收集和对深度强化学习驱动器的控制策略的测试以供使用乘坐乘坐乘积级别。此外,我们提出了第一个特定于用户的O-RAN交通转向(TS)智能移交框架。它使用随机的合奏混合物,结合了最先进的卷积神经网络体系结构,以最佳地为网络中的每个用户分配服务基站。我们的TS XAPP接受了NS-O-RAN收集的超过4000万个数据点的培训,该数据点在近距离RIC上运行,并控制其基站。我们在大规模部署中评估了性能,这表明基于XAPP的交换可以使吞吐量和光谱效率平均比传统的移交启发式方法提高50%,而移动性开销较小。
5G and beyond mobile networks will support heterogeneous use cases at an unprecedented scale, thus demanding automated control and optimization of network functionalities customized to the needs of individual users. Such fine-grained control of the Radio Access Network (RAN) is not possible with the current cellular architecture. To fill this gap, the Open RAN paradigm and its specification introduce an open architecture with abstractions that enable closed-loop control and provide data-driven, and intelligent optimization of the RAN at the user level. This is obtained through custom RAN control applications (i.e., xApps) deployed on near-real-time RAN Intelligent Controller (near-RT RIC) at the edge of the network. Despite these premises, as of today the research community lacks a sandbox to build data-driven xApps, and create large-scale datasets for effective AI training. In this paper, we address this by introducing ns-O-RAN, a software framework that integrates a real-world, production-grade near-RT RIC with a 3GPP-based simulated environment on ns-3, enabling the development of xApps and automated large-scale data collection and testing of Deep Reinforcement Learning-driven control policies for the optimization at the user-level. In addition, we propose the first user-specific O-RAN Traffic Steering (TS) intelligent handover framework. It uses Random Ensemble Mixture, combined with a state-of-the-art Convolutional Neural Network architecture, to optimally assign a serving base station to each user in the network. Our TS xApp, trained with more than 40 million data points collected by ns-O-RAN, runs on the near-RT RIC and controls its base stations. We evaluate the performance on a large-scale deployment, showing that the xApp-based handover improves throughput and spectral efficiency by an average of 50% over traditional handover heuristics, with less mobility overhead.