论文标题

Hochschild-Kostant-Rosenberg定理和对数Hochschild同源性的残留序列

A Hochschild-Kostant-Rosenberg theorem and residue sequences for logarithmic Hochschild homology

论文作者

Binda, Federico, Lundemo, Tommy, Park, Doosung, Østvær, Paul Arne

论文摘要

本文将Hochschild同源性理论纳入了我们的日志动机计划。我们讨论了对数霍基柴尔德同源性的几何定义,并构建了André-Quillen型光谱序列。后者对离散预循环环之间的派生对数平滑图进行了退化。我们采用此功能来显示Hochschild-Kostant-Rosenberg定理的对数版本,并且对数Hochschild同源性在日志动机类别中可以表示。在应用中,我们推断出涉及日志方案的爆炸的广义残基序列。

This paper incorporates the theory of Hochschild homology into our program on log motives. We discuss a geometric definition of logarithmic Hochschild homology of derived pre-log rings and construct an André-Quillen type spectral sequence. The latter degenerates for derived log smooth maps between discrete pre-log rings. We employ this to show a logarithmic version of the Hochschild-Kostant-Rosenberg theorem and that logarithmic Hochschild homology is representable in the category of log motives. Among the applications, we deduce a generalized residue sequence involving blow-ups of log schemes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源