论文标题

针对可变形物体操纵的动力学模型的重点适应

Focused Adaptation of Dynamics Models for Deformable Object Manipulation

论文作者

Mitrano, Peter, LaGrassa, Alex, Kroemer, Oliver, Berenson, Dmitry

论文摘要

为了有效地学习新环境中任务的动态模型,可以调整在类似的源环境中学习的模型。但是,当目标数据集包含与源环境大不相同的过渡时,现有的适应方法可能会失败。例如,源环境动力学可能是在自由空间中操纵的绳索,而目标动态可能涉及碰撞和障碍物变形。我们的关键见解是通过将模型适应仅关注源和目标动态相似的区域来提高数据效率。在绳索示例中,调整自由空间动力学比调整自由空间动力学的同时学习碰撞动力学所需的数据要少得多。我们提出了一种适应的新方法,该方法可有效适应类似动态的区域。此外,我们将这种适应方法与先前的计划结合使用,并使用不可靠的动态来制定一种称为焦点的数据有效的在线适应方法。我们首先证明,所提出的适应方法在模拟绳索操纵和植物浇水任务上相似动力学区域的预测误差在统计学上显着降低了预测误差。然后,我们展示了一项双层绳索操纵任务,该任务重点是在模拟和现实世界中实现数据有效的在线学习。

In order to efficiently learn a dynamics model for a task in a new environment, one can adapt a model learned in a similar source environment. However, existing adaptation methods can fail when the target dataset contains transitions where the dynamics are very different from the source environment. For example, the source environment dynamics could be of a rope manipulated in free-space, whereas the target dynamics could involve collisions and deformation on obstacles. Our key insight is to improve data efficiency by focusing model adaptation on only the regions where the source and target dynamics are similar. In the rope example, adapting the free-space dynamics requires significantly fewer data than adapting the free-space dynamics while also learning collision dynamics. We propose a new method for adaptation that is effective in adapting to regions of similar dynamics. Additionally, we combine this adaptation method with prior work on planning with unreliable dynamics to make a method for data-efficient online adaptation, called FOCUS. We first demonstrate that the proposed adaptation method achieves statistically significantly lower prediction error in regions of similar dynamics on simulated rope manipulation and plant watering tasks. We then show on a bimanual rope manipulation task that FOCUS achieves data-efficient online learning, in simulation and in the real world.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源