论文标题
使用基于运输的密度击败恒星系统的系统误差地板
Beating stellar systematic error floors using transit-based densities
论文作者
论文摘要
长期以来,人们已经理解,过境行星的光曲线限制了其宿主恒星的密度。该事实通常用于改善恒星表面重力的测量值,并被认为是对恒星质量的独立检查。在这里,我们展示了恒星密度也可以显着提高半径的精度和恒星的有效温度。当我们正确地说明从光度零点,模型大气,干涉量学校准和灭绝的4.2%半径和2.0%的温度系统误差时,这种附加约束尤其重要。在典型的情况下,我们可以通过基于进化模型的技术将恒星半径限制在3%,温度将1.75%限制为1.75%。在最佳的现实情况下,我们可以将半径降至1.6%,温度降至1.1% - 远低于系统测量地板 - 可以提高行星参数中的精度两个。我们详细说明了使它成为可能的机制,并展示了近乎理想的系统WASP-4的技术。 我们还表明,GAIA DR3的视差中的统计和系统不确定性通常都是$ L _*$中不确定性的重要组成部分,并且必须仔细处理。利用我们的技术,需要同时模型的恒星演化,降压通量(例如,恒星光谱能分布)和行星传输,同时考虑到每个exofastv2的系统误差。
It has long been understood that the light curve of a transiting planet constrains the density of its host star. That fact is routinely used to improve measurements of the stellar surface gravity and has been argued to be an independent check on the stellar mass. Here we show how the stellar density can also dramatically improve the precision of the radius and effective temperature of the star. This additional constraint is especially significant when we properly account for the 4.2% radius and 2.0% temperature systematic errors inherited from photometric zero-points, model atmospheres, interferometric calibration, and extinction. In the typical case, we can constrain stellar radii to 3% and temperatures to 1.75% with our evolutionary-model-based technique. In the best real-world cases, we can infer radii to 1.6% and temperatures to 1.1% -- well below the systematic measurement floors -- which can improve the precision in the planetary parameters by a factor of two. We explain in detail the mechanism that makes it possible and show a demonstration of the technique for a near-ideal system, WASP-4. We also show that both the statistical and systematic uncertainties in the parallax from Gaia DR3 are often a significant component of the uncertainty in $L_*$ and must be treated carefully. Taking advantage of our technique requires simultaneous models of the stellar evolution, bolometric flux (e.g., a stellar spectral energy distribution), and the planetary transit, while accounting for the systematic errors in each, as is done in EXOFASTv2.