论文标题
使用深度学习的遥感图像中植被的语义分割
Semantic Segmentation of Vegetation in Remote Sensing Imagery Using Deep Learning
论文作者
论文摘要
近年来,地理空间行业一直在稳步发展。这种增长意味着增加卫星星座,这些星座每天都会产生大量的卫星图像和其他遥感数据。有时,即使在某些情况下我们指的是公开可获得的数据,由于它的大小庞大,它也无法占据。从时间和其他资源的角度来看,借助人工或使用传统的自动化方法来处理如此大量的数据并不总是可行的解决方案。 在目前的工作中,我们提出了一种方法,用于创建一个由公开可用的遥感数据组成的多模式和时空数据集,并使用ART机器学习状态(ML)技术组成可行性。确切地说,卷积神经网络(CNN)模型的用法能够分离拟议数据集中存在的不同类别的植被。在地理信息系统(GIS)和计算机视觉(CV)的背景下,类似方法的受欢迎程度和成功更普遍地表明,应考虑并进一步分析和开发方法。
In recent years, the geospatial industry has been developing at a steady pace. This growth implies the addition of satellite constellations that produce a copious supply of satellite imagery and other Remote Sensing data on a daily basis. Sometimes, this information, even if in some cases we are referring to publicly available data, it sits unaccounted for due to the sheer size of it. Processing such large amounts of data with the help of human labour or by using traditional automation methods is not always a viable solution from the standpoint of both time and other resources. Within the present work, we propose an approach for creating a multi-modal and spatio-temporal dataset comprised of publicly available Remote Sensing data and testing for feasibility using state of the art Machine Learning (ML) techniques. Precisely, the usage of Convolutional Neural Networks (CNN) models that are capable of separating different classes of vegetation that are present in the proposed dataset. Popularity and success of similar methods in the context of Geographical Information Systems (GIS) and Computer Vision (CV) more generally indicate that methods alike should be taken in consideration and further analysed and developed.