论文标题

平面全息图的可解决模型

A Solvable Model of Flat Space Holography

论文作者

Rosso, Felipe

论文摘要

我们提出了在二维的两个维度上对平面全息图的明确实现,在两个维度上,二元性的两侧都是独立定义的,并且边界理论是完全可解决的。在大量中,我们定义了一种新颖的$ \ Mathcal {n} = 1 $平面空间超级理论,并准确地计算了其欧几里得分区功能的完整拓扑扩展,并具有任意数量的边界。在边界上,我们考虑了具有高斯电位的双缩放的Hermitian随机矩阵模型,并使用Loop方程将其独立地重现了拓扑扩展中的所有顺序。可解决的高斯基质模型提供的超级重力理论的非扰动完成允许在许多情况下进行分析,在平面量子重力中可观察到的可观察结果计算。

We propose an explicit realization of flat space holography in two dimensions where both sides of the duality are independently defined and the boundary theory is completely solvable. In the bulk, we define a novel $\mathcal{N}=1$ flat space supergravity theory and exactly compute the full topological expansion of its Euclidean partition function with an arbitrary number of boundaries. On the boundary, we consider a double scaled Hermitian random matrix model with Gaussian potential and use the loop equations to show it independently reproduces the bulk partition function to all orders in the topological expansion. The non-perturbative completion of the supergravity theory provided by the solvable Gaussian matrix model allows for the exact, and in many cases analytic, computation of observables in flat space quantum gravity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源