论文标题

计算固定随机过程的自相关功能的数值配方

A numerical recipe for the computation of stationary stochastic processes' autocorrelation function

论文作者

Miccichè, Salvatore

论文摘要

许多自然现象表现出一种随机性质,人们尝试通过使用不同类型的随机过程进行建模。在这种情况下,通常人们有兴趣研究手头自然现象的记忆特性。这通常是通过计算描述所考虑现象的数值序列的自相关函数来完成的。通常,在考虑现实世界数据时,必须从单个数值系列开始计算自相关函数:即采用时间平均值的方法。以后,我们将根据对数量n(τ,gμ,gν)的初步评估进行评估时间平均的自相关函数的新型方法,除了归一化因素外,它代表了一个数值估计值,基于2分接头可能性密度密度密度密度函数p(x2,x2,x11,1,10)的过程,基于单个过程的实现。该方法的主要优点是,它允许定量评估由于任何模拟时间序列都必须有限的事实,因此在数值评估自相关函数时遇到的错误是什么。实际上,我们表明,对于广泛的随机过程,承认具有白噪声的非线性langevin方程,并且可以使用fokker-planck方程来描述,这是自相关函数的数值估计的方式,其理论预测取决于PDF尾部。此外,n(τ,gμ,gν)的知识允许轻松计算过程直方图并表征多个时间尺度的过程。我们将通过考虑三个随机过程,它们的自相关函数和两点概率密度函数都以分析或数值形式闻名,从而可以直接比较。

Many natural phenomena exhibit a stochastic nature that one attempts at modeling by using stochastic processes of different types. In this context, often one is interested in investigating the memory properties of the natural phenomenon at hand. This is usually accomplished by computing the autocorrelation function of the numerical series describing the considered phenomenon. Often, especially when considering real world data, the autocorrelation function must be computed starting from a single numerical series: i.e. with a time-average approach. Hereafter, we will propose a novel way of evaluating the time-average autocorrelation function, based on the preliminary evaluation of the quantity N(τ,gμ,gν), that, apart from normalization factors, represents a numerical estimate, based on a single realization of the process, of the 2-point joint probability density function P(x2,τ;x1,0). The main advantage of the proposed method is that it allows to quantitatively assess what is the error that one makes when numerically evaluating the autocorrelation function due to the fact that any simulated time series is necessarily bounded. In fact, we show that, for a wide class of stochastic processes admitting a nonlinear Langevin equation with white noise and that can be described by using a Fokker-Planck equation, the way the numerical estimate of the autocorrelation function converges to its theoretical prediction depends on the pdf tails. Moreover, the knowledge of N(τ,gμ,gν) allows to easily compute the process histogram and to characterize processes with multiple timescales. We will show the effectiveness of our new methodology by considering three stochastic processes whose autocorrelation function and two-point probability density function are both known in an analytical or numerical form, thus allowing direct comparisons.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源