论文标题
一种用于中子共振的自旋分类的新型机器学习方法
A novel Machine-Learning method for spin classification of neutron resonances
论文作者
论文摘要
核反应堆和其他核系统的性能取决于对这些系统中使用的材料的中子相互作用横截面的精确理解。这些横截面表现出谐振结构,其形状部分由谐振的角动量量子数确定。因此,中子共振的量子数的正确分配至关重要。在此项目中,我们应用机器学习以仅使用共振的能量和宽度来自动化量子数分配,而不依赖详细的传输或捕获测量值。用于量子数分配的分类器使用随机生成的共振序列进行训练,其分布模仿了真实数据。我们探索了几种物理动机功能来培训分类器的使用。这些功能等于给定共振的宽度和共振对间距的分布测试。我们特别注意在分类目的不能信任捕获宽度的情况下,或者没有足够的信息来通过总旋转$ j $对共鸣进行分类。我们使用模拟和实际$^{52} $ CR共振数据来证明我们的分类方法的功效。
The performance of nuclear reactors and other nuclear systems depends on a precise understanding of the neutron interaction cross sections for materials used in these systems. These cross sections exhibit resonant structure whose shape is determined in part by the angular momentum quantum numbers of the resonances. The correct assignment of the quantum numbers of neutron resonances is, therefore, paramount. In this project, we apply machine learning to automate the quantum number assignments using only the resonances' energies and widths and not relying on detailed transmission or capture measurements. The classifier used for quantum number assignment is trained using stochastically generated resonance sequences whose distributions mimic those of real data. We explore the use of several physics-motivated features for training our classifier. These features amount to out-of-distribution tests of a given resonance's widths and resonance-pair spacings. We pay special attention to situations where either capture widths cannot be trusted for classification purposes or where there is insufficient information to classify resonances by the total spin $J$. We demonstrate the efficacy of our classification approach using simulated and actual $^{52}$Cr resonance data.