论文标题
生物连接组作为人工神经网络架构的代表
Biological connectomes as a representation for the architecture of artificial neural networks
论文作者
论文摘要
神经科学方面的巨大努力正在努力绘制许多新物种的连接群,包括果蝇果蝇的接近完成。重要的是要询问这些模型是否可以使人工智能受益。在这项工作中,我们提出了两个基本问题:(1)生物连接组可以在机器学习中提供的何处以及何时提供使用,(2)哪些设计原理对于提取良好的连接符号是必需的。为此,我们将秀丽隐杆线虫线虫的运动电路转化为以不同水平的生物物理现实主义水平的人工神经网络,并评估了这些网络在运动和非运动行为任务上训练这些网络的结果。我们证明,生物物理现实主义不必被维持即可获得使用生物回路的优势。我们还确定,即使没有保留确切的接线图,建筑统计数据也提供了有价值的先验。最后,我们表明,虽然秀丽隐杆线虫运动电路对运动问题提供了强大的感应偏见,但其结构可能会阻碍与运动无关的任务(例如视觉分类问题)。
Grand efforts in neuroscience are working toward mapping the connectomes of many new species, including the near completion of the Drosophila melanogaster. It is important to ask whether these models could benefit artificial intelligence. In this work we ask two fundamental questions: (1) where and when biological connectomes can provide use in machine learning, (2) which design principles are necessary for extracting a good representation of the connectome. Toward this end, we translate the motor circuit of the C. Elegans nematode into artificial neural networks at varying levels of biophysical realism and evaluate the outcome of training these networks on motor and non-motor behavioral tasks. We demonstrate that biophysical realism need not be upheld to attain the advantages of using biological circuits. We also establish that, even if the exact wiring diagram is not retained, the architectural statistics provide a valuable prior. Finally, we show that while the C. Elegans locomotion circuit provides a powerful inductive bias on locomotion problems, its structure may hinder performance on tasks unrelated to locomotion such as visual classification problems.