论文标题
掩盖了多步多变时间序列预测未来信息
Masked Multi-Step Multivariate Time Series Forecasting with Future Information
论文作者
论文摘要
在本文中,我们介绍了蒙版的多步多变量预测(MMMF),这是一个新颖而一般的自我监督学习框架,用于时间序列预测,并提供已知的未来信息。在许多现实世界的预测情况下,已知一些未来的信息,例如,在做出短期到中期的电力需求预测或飞机出发预测时的油价预测时,天气信息。现有的机器学习预测框架可以归类为(1)基于样本的方法,在此方法中进行了每个预测,以及(2)时间序列回归方法,其中未来信息未完全合并。为了克服现有方法的局限性,我们提出了MMMF,这是一个培训能够生成一系列输出序列的神经网络模型的框架,将过去的时间信息和有关未来的已知信息结合在一起,以做出更好的预测。实验是在两个现实世界数据集上进行的(1)中期电力需求预测,以及(2)前两个月的飞行出发预测。他们表明,所提出的MMMF框架的表现不仅优于基于样本的方法,而且具有与完全相同的基本模型的现有时间序列预测模型。此外,一旦通过MMMF训练了神经网络模型,其推理速度与接受传统回归公式训练的模型的推理速度相似,从而使MMMF成为现有回归训练的时间序列的更好替代方法,如果有一些可用的未来信息。
In this paper, we introduce Masked Multi-Step Multivariate Forecasting (MMMF), a novel and general self-supervised learning framework for time series forecasting with known future information. In many real-world forecasting scenarios, some future information is known, e.g., the weather information when making a short-to-mid-term electricity demand forecast, or the oil price forecasts when making an airplane departure forecast. Existing machine learning forecasting frameworks can be categorized into (1) sample-based approaches where each forecast is made independently, and (2) time series regression approaches where the future information is not fully incorporated. To overcome the limitations of existing approaches, we propose MMMF, a framework to train any neural network model capable of generating a sequence of outputs, that combines both the temporal information from the past and the known information about the future to make better predictions. Experiments are performed on two real-world datasets for (1) mid-term electricity demand forecasting, and (2) two-month ahead flight departures forecasting. They show that the proposed MMMF framework outperforms not only sample-based methods but also existing time series forecasting models with the exact same base models. Furthermore, once a neural network model is trained with MMMF, its inference speed is similar to that of the same model trained with traditional regression formulations, thus making MMMF a better alternative to existing regression-trained time series forecasting models if there is some available future information.