论文标题

Maxi J1820+070 X射线频谱调度揭示了黑洞二进制中的积聚流的性质

MAXI J1820+070 X-ray spectral-timing reveals the nature of the accretion flow in black hole binaries

论文作者

Kawamura, Tenyo, Done, Chris, Axelsson, Magnus, Takahashi, Tadayuki

论文摘要

黑洞X射线二进制文件在短时间(0.01-100秒)上显示出显着的随机变化,并且在不同能带中看到的相关变异性的滞后模式复杂。通常在模型中解释了这种行为,在一个模型中,在大半径上缓慢的波动通过积聚流动传播,调节在较小的半径下产生的更快的波动。将此方案与径向分层的发射结合为测量数据量表的传播时间尺度开辟了道路,从而可以直接测试积聚流量结构。我们以前开发了一个基于此图片的模型,并表明它可以从最明亮的黑洞瞬态Maxi J1820+070中拟合更好(0.5-10 KEV)数据。但是,在这里我们表明,当从Insight-HXMT中推断出较高的能量可变性数据时,它会失败。我们扩展了模型,以便在每个半径上排放的光谱会因波动(旋转)而不仅仅改变归一化而改变形状。这可以强烈抑制分数可变性,这是数据中看到的能量的函数。尽管该系统显示出强烈的喷射,但衍生的繁殖时间尺度比磁木片(MAD)所预测的要慢。我们的新模型共同符合频谱和可变性高达50 keV,尽管仍然无法匹配上面的所有数据。但是,3-40 keV的良好拟合度意味着QPO最容易解释为流动的外部调制,例如在透镜 - 刺激性进动中产生的,而不是在其他频谱定时组件(例如喷气机)中产生。

Black hole X-ray binaries display significant stochastic variability on short time-scales (0.01-100 seconds), with a complex pattern of lags in correlated variability seen in different energy bands. This behaviour is generally interpreted in a model where slow fluctuations stirred up at large radii propagate down through the accretion flow, modulating faster fluctuations generated at smaller radii. Coupling this scenario with radially-stratified emission opens the way to measure the propagation time-scale from data, allowing direct tests of the accretion flow structure. We previously developed a model based on this picture and showed that it could fit NICER (0.5-10 keV) data from the brightest recent black hole transient, MAXI J1820+070. However, here we show it fails when extrapolated to higher energy variability data from Insight-HXMT. We extend our model so that the spectrum emitted at each radius changes shape in response to fluctuations (pivoting) rather than just changing normalisation. This gives the strong suppression of fractional variability as a function of energy seen in the data. The derived propagation time-scale is slower than predicted by a magnetically arrested disc (MAD), despite this system showing a strong jet. Our new model jointly fits the spectrum and variability up to 50 keV, though still cannot match all the data above this. Nonetheless, the good fit for 3-40 keV means the QPO can most easily be explained as an extrinsic modulation of the flow, such as produced in Lense-Thirring precession, rather than arising in an additional spectral-timing component such as the jet.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源