论文标题

NAF:稀疏视图CBCT重建的神经衰减场

NAF: Neural Attenuation Fields for Sparse-View CBCT Reconstruction

论文作者

Zha, Ruyi, Zhang, Yanhao, Li, Hongdong

论文摘要

本文提出了一种新颖而快速的自我监督解决方案,用于稀疏视图CBCT重建(锥形束计算机断层扫描),不需要外部训练数据。具体而言,所需的衰减系数表示为3D空间坐标的连续函数,该功能由完全连接的深神经网络参数化。我们可以离散地综合预测并通过最大程度地减少真实和合成预测之间的误差来培训网络。采用基于学习的编码器需要哈希编码来帮助网络捕获高频细节。该编码器在具有更高的性能和效率方面优于常用的频域编码器,因为它利用了人体器官的平稳性和稀疏性。已经在人体器官和幻影数据集上进行了实验。提出的方法达到了最新的准确性,并花费了相当短的计算时间。

This paper proposes a novel and fast self-supervised solution for sparse-view CBCT reconstruction (Cone Beam Computed Tomography) that requires no external training data. Specifically, the desired attenuation coefficients are represented as a continuous function of 3D spatial coordinates, parameterized by a fully-connected deep neural network. We synthesize projections discretely and train the network by minimizing the error between real and synthesized projections. A learning-based encoder entailing hash coding is adopted to help the network capture high-frequency details. This encoder outperforms the commonly used frequency-domain encoder in terms of having higher performance and efficiency, because it exploits the smoothness and sparsity of human organs. Experiments have been conducted on both human organ and phantom datasets. The proposed method achieves state-of-the-art accuracy and spends reasonably short computation time.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源