论文标题
通过机器学习探索超新星重力波
Exploring Supernova Gravitational Waves with Machine Learning
论文作者
论文摘要
核心溢出的超新星(CCSNE)发射强大的引力波(GWS)。由于由源发出的GW包含有关源的信息,因此从CCSNE观察GWS可能会使我们能够了解有关CCSN的更多信息。我们研究是否可以从弹跳和早期降压GW信号中推断铁芯质量。我们使用数值模拟为一系列恒星模型生成GW信号,并应用机器学习来训练和对信号进行分类。我们认为理想化的有利场景。首先,我们使用快速旋转的模型,该模型比缓慢旋转的模型产生更强的GW。其次,我们将自己局限于具有四个不同质量的模型,从而简化了选择过程。我们表明,分类精度不超过〜70%,这表明即使在这种乐观的情况下,弹跳中包含的信息和早期降落的GW信号也不足以精确探测铁核心质量。这表明可能有必要合并其他信息,例如后来的弹药后进化和中微子观察的GW,以准确测量铁核心质量。
Core-collapse supernovae (CCSNe) emit powerful gravitational waves (GWs). Since GWs emitted by a source contain information about the source, observing GWs from CCSNe may allow us to learn more about CCSNs. We study if it is possible to infer the iron core mass from the bounce and early ring-down GW signal. We generate GW signals for a range of stellar models using numerical simulations and apply machine learning to train and classify the signals. We consider an idealized favourable scenario. First, we use rapidly rotating models, which produce stronger GWs than slowly rotating models. Second, we limit ourselves to models with four different masses, which simplifies the selection process. We show that the classification accuracy does not exceed ~70%, signifying that even in this optimistic scenario, the information contained in the bounce and early ring-down GW signal is not sufficient to precisely probe the iron core mass. This suggests that it may be necessary to incorporate additional information such as the GWs from later post-bounce evolution and neutrino observations to accurately measure the iron core mass.