论文标题
大数据带来了大问题:陷阱衡量农作物指数保险的基础风险
With big data come big problems: pitfalls in measuring basis risk for crop index insurance
论文作者
论文摘要
新的卫星传感器很快将有可能估算田间水平的作物产量,从而有很大的潜力获得农业指数保险。本文从这些新技术中确定了对更好保险的重要威胁:具有多个领域和几年的数据可以产生偏见的基础风险估计,这是指数保险的基本指标。为了证明这种偏见,我们使用有关美国和肯尼亚农业产量的最先进的卫星数据来估计和模拟基础风险。我们发现实质性向下偏置,导致系统地高估保险质量。 在本文中,我们认为作物保险中的大数据可能导致新的情况,在这种情况下,变量数量$ n $的数量在很大程度上超过了观测值$ t $。在这种情况下,我们在模拟中发现的巨大偏见证明了$ t \ ll n $,传统的渐近学破裂。我们展示了高维度,低样本尺寸(HDLSS)渐近学如何以及尖峰协方差模型为索引保险中遇到的$ t \ ll n $案例提供了更相关的框架。更确切地说,我们得出了协方差矩阵第一个特征值相对份额的渐近分布,这是指数保险系统风险的量度。我们的公式准确地近似于从卫星数据中模拟的经验偏差,并为从业者提供了一种有用的工具,可以量化保险质量的偏见。
New satellite sensors will soon make it possible to estimate field-level crop yields, showing a great potential for agricultural index insurance. This paper identifies an important threat to better insurance from these new technologies: data with many fields and few years can yield downward biased estimates of basis risk, a fundamental metric in index insurance. To demonstrate this bias, we use state-of-the-art satellite-based data on agricultural yields in the US and in Kenya to estimate and simulate basis risk. We find a substantive downward bias leading to a systematic overestimation of insurance quality. In this paper, we argue that big data in crop insurance can lead to a new situation where the number of variables $N$ largely exceeds the number of observations $T$. In such a situation where $T\ll N$, conventional asymptotics break, as evidenced by the large bias we find in simulations. We show how the high-dimension, low-sample-size (HDLSS) asymptotics, together with the spiked covariance model, provide a more relevant framework for the $T\ll N$ case encountered in index insurance. More precisely, we derive the asymptotic distribution of the relative share of the first eigenvalue of the covariance matrix, a measure of systematic risk in index insurance. Our formula accurately approximates the empirical bias simulated from the satellite data, and provides a useful tool for practitioners to quantify bias in insurance quality.