论文标题

换取质量以获取社区检测效率:跨图的归纳方法

Trading off Quality for Efficiency of Community Detection: An Inductive Method across Graphs

论文作者

Qin, Meng, Zhang, Chaorui, Bai, Bo, Zhang, Gong, Yeung, Dit-Yan

论文摘要

许多网络应用程序可以作为NP-HARD组合优化问题(CD)进行配合。由于NP硬度,为了平衡CD质量和效率仍然是一个挑战。大多数现有的CD方法都是转导的,仅针对单个图上的CD独立优化。其中一些方法使用先进的机器学习技术来获得高质量的CD结果,但通常具有很高的复杂性。其他方法使用快速的启发式近似来确保运行时间较低,但可能会降低质量。与这些跨传输方法相反,我们提出了一种跨系统或方案图的替代归纳社区检测(ICD)方法,以减轻NP-HARD挑战。 ICD首先在历史图上进行了对抗性双GNN的离线训练,以捕获系统的关键特性。然后,训练有素的模型将直接概括为在线CD的新图形,而无需其他优化,在这种情况下,可以实现质量和效率之间的更好的权衡。 ICD还可以在离线培训中捕获置换的社区标签,并在没有固定数量的节点和社区的新图表上处理在线CD。一组基准测试的实验表明,ICD可以在各种基准的质量和效率之间取决于重大的权衡。

Many network applications can be formulated as NP-hard combinatorial optimization problems of community detection (CD). Due to the NP-hardness, to balance the CD quality and efficiency remains a challenge. Most existing CD methods are transductive, which are independently optimized only for the CD on a single graph. Some of these methods use advanced machine learning techniques to obtain high-quality CD results but usually have high complexity. Other approaches use fast heuristic approximation to ensure low runtime but may suffer from quality degradation. In contrast to these transductive methods, we propose an alternative inductive community detection (ICD) method across graphs of a system or scenario to alleviate the NP-hard challenge. ICD first conducts the offline training of an adversarial dual GNN on historical graphs to capture key properties of the system. The trained model is then directly generalized to new unseen graphs for online CD without additional optimization, where a better trade-off between quality and efficiency can be achieved. ICD can also capture the permutation invariant community labels in the offline training and tackle the online CD on new graphs with non-fixed number of nodes and communities. Experiments on a set of benchmarks demonstrate that ICD can achieve a significant trade-off between quality and efficiency over various baselines.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源