论文标题
朝着维护两相流量的两速度模型的锋利的结构:质量和动量的运输
Towards a sharp, structure preserving two-velocity model for two-phase flow: transport of mass and momentum
论文作者
论文摘要
对流的数值建模主导高密度比两相流动构成了几个挑战,其中包括解决界面处的相对较薄的剪切层。为此,我们提出了两相纳维尔 - 斯托克斯(NS)方程的两速度模型的急剧离散化。这可以通过允许在与接口的方向上的速度不连续性来对剪切层建模而不是解决剪切层的能力。 在本文中,我们将注意力集中在这种速度不连续性的情况下,将注意力集中在质量和动量的运输上。我们提出了尺寸不地位的流体(VOF)方法的概括,以在两速度公式中对界面进行对流。得出了有关捐赠区域建设的足够条件,以确保尺寸未平面的对流方法的体积分数的界限。我们建议通过尺寸未平面的几何VOF方法插入质量通量,以使交错动量场的对流,从而产生半差异能量。要获得速度的质量,对几乎空的对照体积的划分并不总是定义明确,因此在构建动量通量interpolant时要谨慎:我们提出的通量interpolant保证该分裂总是定义明确的,而无需不必要地消散。 除了新提出的两速度模型外,我们还详细介绍了两相ns方程的单速度公式的准确保守(每阶段和总线性动量)实现,这将用于比较。 使用经典的时间可逆流场验证了离散化方法,在本文中,对流是与NS求解器未耦合的,NS求解器将在以后的论文中开发。
The numerical modelling of convection dominated high density ratio two-phase flow poses several challenges, amongst which is resolving the relatively thin shear layer at the interface. To this end we propose a sharp discretisation of the two-velocity model of the two-phase Navier-Stokes (NS) equations. This results in the ability to model the shear layer, rather than resolving it, by allowing for a velocity discontinuity in the direction(s) tangential to the interface. In this paper we focus our attention on the transport of mass and momentum in the presence of such a velocity discontinuity. We propose a generalisation of the dimensionally unsplit geometric volume of fluid (VOF) method for the advection of the interface in the two-velocity formulation. Sufficient conditions on the construction of donating regions are derived that ensure boundedness of the volume fraction for dimensionally unsplit advection methods. We propose to interpolate the mass fluxes resulting from the dimensionally unsplit geometric VOF method for the advection of the staggered momentum field, resulting in semi-discrete energy conservation. Division of the momentum by the respective mass, to obtain the velocity, is not always well-defined for nearly empty control volumes and therefore care is taken in the construction of the momentum flux interpolant: our proposed flux interpolant guarantees that this division is always well-defined without being unnecessarily dissipative. Besides the newly proposed two-velocity model we also detail our exactly conservative (mass per phase and total linear momentum) implementation of the one-velocity formulation of the two-phase NS equations, which will be used for comparison. The discretisation methods are validated using classical time-reversible flow fields, where in this paper the advection is uncoupled from the NS solver, which will be developed in a later paper.