论文标题

低导热率相位变化记忆超晶格

Low Thermal Conductivity Phase Change Memory Superlattices

论文作者

Ning, Jing, Zhou, Xilin, Wang, Yunzheng, Yagi, Takashi, Kalikka, Janne, Teo, Siew Lang, Song, Zhitang, Bosman, Michel, Simpson, Robert E.

论文摘要

相变存储器通常通过熔化材料来从根本上降低其电导率来重置。重置相变材料所需的高功率和伴随的高电流密度是限制3D相变为内存体系结构的访问时间的主要问题。开发了相变超晶格,以通过将相变到两种不同的相变材料之间的界面来降低复位能量。但是,超晶格的高热电导率意味着热量限制在相变材料中,并且大多数热能都浪费在周围的材料上。在这里,我们将Ti确定为一种有用的掺杂剂,可大大降低SB2TE3-GETE超晶格的导热率,同时还可以通过不需要的无序稳定分层结构。我们通过激光加热证明,与仅使用界面变化过渡和应变工程的超级晶格相比,用Ti一半的SB2TE3层掺入SB2TE3层,从而降低了热导率。热优化的超晶格具有(0 0 L)晶体学取向,但在“ ON”(set)状态中的热导率仅为0.25 w/m.k。原型相变的记忆设备将这种Ti掺杂的超级晶格开关和电压的速度更快,并且比未掺杂的超级晶格的速度要低得多。在切换过程中,Ti掺杂的SB2TE3层在超晶格内保持稳定,并且GE原子只有活性并进行界面相变。总之,我们显示了热优化的SB2TE3-GETE超级晶格的潜力,用于新一代的节能电和光相变。

Phase change memory devices are typically reset by melt-quenching a material to radically lower its electrical conductance. The high power and concomitantly high current density required to reset phase change materials is the major issue that limits the access times of 3D phase change memory architectures. Phase change superlattices were developed to lower the reset energy by confining the phase transition to the interface between two different phase change materials. However, the high thermal conductivity of the superlattices means that heat is poorly confined within the phase change material, and most of the thermal energy is wasted to the surrounding materials. Here, we identified Ti as a useful dopant for substantially lowering the thermal conductivity of Sb2Te3-GeTe superlattices whilst also stabilising the layered structure from unwanted disordering. We demonstrate via laser heating that lowering the thermal conductivity by doping the Sb2Te3 layers with Ti halves the switching energy compared to superlattices that only use interfacial phase change transitions and strain engineering. The thermally optimized superlattice has (0 0 l) crystallographic orientation yet a thermal conductivity of just 0.25 W/m.K in the "on" (set) state. Prototype phase change memory devices that incorporate this Ti-doped superlattice switch faster and and at a substantially lower voltage than the undoped superlattice. During switching the Ti-doped Sb2Te3 layers remain stable within the superlattice and only the Ge atoms are active and undergo interfacial phase transitions. In conclusion, we show the potential of thermally optimised Sb2Te3-GeTe superlattices for a new generation of energy-efficient electrical and optical phase change memory.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源