论文标题
矩阵雅各比·生物双歧式多项式通过riemann-hilbert问题
Matrix Jacobi Biorthogonal Polynomials via Riemann-Hilbert problem
论文作者
论文摘要
我们认为矩阵正交多项式与Jacobi型重量矩阵有关,这些矩阵可以根据给定的矩阵Pearson方程来定义。说明我们可以得出这些矩阵正交多项式以及与之相关的第二种函数的第一和二阶差异关系,我们可以得出一阶和二阶差异关系。对于相应的矩阵复发系数,对于三个项复发关系系数,获得了离散painlevéD-PIV方程的非亚伯延长。
We consider matrix orthogonal polynomials related to Jacobi type matrices of weights that can be defined in terms of a given matrix Pearson equation. Stating a Riemann-Hilbert problem we can derive first and second order differential relations that these matrix orthogonal polynomials and the second kind functions associated to them verify. For the corresponding matrix recurrence coefficients, non-Abelian extensions of a family of discrete Painlevé d-PIV equations are obtained for the three term recurrence relation coefficients.