论文标题
具有高质量伪标签的心脏磁共振图像分割的半监督域概括
Semi-Supervised Domain Generalization for Cardiac Magnetic Resonance Image Segmentation with High Quality Pseudo Labels
论文作者
论文摘要
为医学细分任务开发一种深度学习方法在很大程度上依赖大量标记的数据。但是,注释需要专业知识,并且数量有限。最近,半监督学习在医疗细分任务中表现出巨大的潜力。与心脏磁共振图像有关的大多数现有方法仅关注具有相似域和高图像质量的常规图像。在[2]中开发了一种半监督域的概括方法,该方法提高了各种数据集上的伪标签的质量。在本文中,我们遵循[2]中的策略,并提出了半监督医学分割的域概括方法。我们的主要目标是在具有各种领域的极端MRI分析下提高伪标签的质量。我们对输入图像进行傅立叶变换,以学习低级统计和跨域信息。然后,我们将增强图像作为输入,作为双交叉伪监督网络的输入,以计算伪标签之间的差异。我们在CMRXMOTION数据集[1]上评估了我们的方法。只有部分标记的数据并且没有域标签,我们的方法始终产生具有不同呼吸运动的心脏磁共振图像的准确分割结果。代码可在以下网址找到:https://github.com/mawanqin2002/stacom20222ma
Developing a deep learning method for medical segmentation tasks heavily relies on a large amount of labeled data. However, the annotations require professional knowledge and are limited in number. Recently, semi-supervised learning has demonstrated great potential in medical segmentation tasks. Most existing methods related to cardiac magnetic resonance images only focus on regular images with similar domains and high image quality. A semi-supervised domain generalization method was developed in [2], which enhances the quality of pseudo labels on varied datasets. In this paper, we follow the strategy in [2] and present a domain generalization method for semi-supervised medical segmentation. Our main goal is to improve the quality of pseudo labels under extreme MRI Analysis with various domains. We perform Fourier transformation on input images to learn low-level statistics and cross-domain information. Then we feed the augmented images as input to the double cross pseudo supervision networks to calculate the variance among pseudo labels. We evaluate our method on the CMRxMotion dataset [1]. With only partially labeled data and without domain labels, our approach consistently generates accurate segmentation results of cardiac magnetic resonance images with different respiratory motions. Code is available at: https://github.com/MAWanqin2002/STACOM2022Ma